• Title/Summary/Keyword: Expanded perlite

Search Result 21, Processing Time 0.02 seconds

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites (팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3286-3291
    • /
    • 2014
  • A study on the crack protection and thermal insulation properties of the expanded perlite inorganic composites was performed. Mixed expanded perlite with a water glass was stabilized for 24 hrs at room temperature in the mold and, thereafter, converted into a massive foamed body through complete drying process at $150^{\circ}C$. Aluminum phosphate and micron size mica powder were used as a reaction accelerator and a stabilizer for thermal crack, respectively. Especially, use of mica exhibited a remarkable effect on the protection of thermal crack at higher temperature over $500^{\circ}C$, and thermal conductivity of the composites was enhanced with higher perlite contents, showing ca. 0.09 W/mK for the sample of 100/200/10/1.5 water glass/perlite/mica/Al phosphate by weight. A severe dimensional deformation of the composite materials was observed over $600^{\circ}C$, however, showing a temperature limitation for a practical application. The facts were considered as the results from the glass transition temperature of the water glass, of which main component is sodium silicate.

An Experimental Study on Development of Building Board with Expanded Perlite (팽창 퍼라이트를 사용한 건축용 보드의 개발에 관한 실험적 연구)

  • 강승문;김대회;지석원;전현규;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.919-924
    • /
    • 2001
  • The purpose of this study is to prepare the basic data for the development of building board with expanded perlite. Each paste was mixed with four levels of water cement ratio(30, 40, 50, 60%), and expanded perlite was substituted with four levels of substitutive ratio(20, 40, 60, 80%) for the each paste. The physical property, compressive strength, bending strength and thermal conductivity of each cement composite which is made through previously described method were analyzed and the result was as follow. In the case of 80 percent substitutive ratio, the cement composite had a mechanical defect which was resulted from lack of paste content. In the case of 40 and 60percent substitutive ratio, the cement composite had sufficient strength, light weight and low thermal conductivity for application to fire resisting board.

  • PDF

Quality Characteristics of Lightweight Cement Composite using Lightweight Aggregates and Expanded Perlite (경량골재와 팽창펄라이트를 활용한 경량 시멘트복합체의 특성)

  • Kim Duck-Mo;Mun Kyoung-Ju;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.533-536
    • /
    • 2004
  • This study aims to manufacture and to evaluate lightweight cement composite using lightweight aggregate and expanded perlite. The expanded perlite and lightweight aggregates were mixed with cement, water, SP(superplasticizer), forming-agent and poly-propylene fiber. The specimens were cured at $20^{\circ}C$ for 24h and then at steam curing of $60^{\circ}C$, RH $100\%$ for 12h. As a result, We could make lightweight cement composite of satisfaction about ALC properties. However it is need to improve the properties of density and water absorption.

  • PDF

Dynamic Analysis of Expansion in Perlite (퍼라이트팽창의 동적해석)

  • Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.143-147
    • /
    • 2012
  • Since the expansion of perlite occurs in a few second in high temperature, it is difficult to identify an expansion phenomenon through experiments. In order to explain this phenomenon, a numerical study has been carried out by setting a model that water vapour diffuses to a tiny bubble existing in perlite melts and then makes the bubble grow and perlite expand. When the bubble grew and the perlite expanded due to the diffusion of water vapour, the dynamic temperature of perlite decreased. Meanwhile, the dynamic pressure of bubble increased at the beginning as water vapour diffuses in melts, but rather decreased after a rapid expansion of bubble.

A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite (해포석과 팽창진주암의 복합화에 의한 발포체 제조)

  • Lee, Chul-Tae;Jang, Moonho;Park, Tae-Moon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • Production process of the flexible ceramic foamed body through the complexation with the fiberous sepiolite and expanded pearlite was researched. The processing of fibrillation of the inorganic mineral fiber sepiolite is the most important whole processing for manufacturing of the ceramic foamed body consisting of the expanded perlite and sepiolite. The fibrous sepiolite and expanded pearlite are blended and becomes the slurry phase. And this slurry phase is converted to a massive foamed body through the low temperature heat treatment process less than $300^{\circ}C$. The heat-treatment process of the slurry phase composite has to be designed to include the evaporation step of the moisture remaining among the slurry composition, foaming step by the decomposition of the foaming agent, and resolution removal step of the organic material which was added in the composite remained after the foaming step. The heat treatment process should be considered as significant factors in design of total process. As to the condition of heat treatment process and foaming agent, there was the a correlation. An organic type foaming agent like DSS (dioctyl sodium sulfosuccinte) was effective in foaming of the slurry compound consisting of the expanded perlite and sepiolite fiber.

Evaluation on the Physical and Chemical Properties of Expanded Rice Hulls as Hydroponic Culture Medium (양액재배용 팽연화 왕겨 배지의 이화학적 특성 구명)

  • 김경희;임상현;남궁양일;유근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to investigate appropriate processing conditions for expanded rice hulls to be used as a medium material in nutrient cultures. The water holding capacity of expanded rice hulls produced by using a domestic grinder with 8 mm gap and 3 mm cutter height was 271.0, and the bulk density and CEC were 0.19g·m-3 and 37.0 cmol·kg-1, respectively. These values are higher than those of perilte. However, geometric mean diameter (GMD) of expanded rice hulls was 1.01mm which was smaller than that of perlite, indicating unfavorable porosity. After supplying nutrient solution, the faster water percolation in expanded rice than perlite required more frequent water supply. There was no significant difference in tomato fruit yield between expanded rice hull and perlite. The pH increase and the lack of nitrogen in early stage of culture are to be solved in the future.

  • PDF

High temperature resistance of self-compacting lightweight mortar incorporating expanded perlite and pumice

  • Karatas, Mehmet;Balun, Bilal;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • This paper presents the effect of aggregate type on high temperature resistance of self-compacting mortars (SCM) produced with normal and lightweight aggregates like expanded perlite and pumice. Silica fume (SF) and fly ash (FA) were used as mineral additives. Totally 13 different mixtures were designed according to the aggregate rates. Mini slump flow, mini V-funnel and viscometer tests were carried out on the fresh mortar. On the other hand, bulk density, porosity, water absorption and high temperature tests were made on the hardened SCM. After being heated to temperatures of 300, 600 and $900^{\circ}C$, respectively, the tensile strength in bending and compressive strength of mortars determined. As a result of the experiments, the increase in the use of lightweight aggregate increased total water absorption and porosity of mortars. It is observed that, the increment in the usage of lightweight aggregate decreased tensile strength in bending and compressive strengths of mortar specimens exposed to high temperatures but the usage of up to 10% expanded perlite in mortar increased the compressive strength of specimens exposed to $300^{\circ}C$.

Durability of the Expanded Rice Hull as a Hydroponic Culture Medium (양액재배용 팽연화 왕겨의 적정 사용기간)

  • 임상현;김경희;안문섭;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • In an effort to evaluate the economic value and durability of the expanded rice hull as substrates, changes in the physical and chemical properties of material and plant growth in that substrate were studied. Using and electron microscope, the structure of used and new expanded rice hull substrate was examined. Considerable decomposition was found in the substrate which had been used one to three times. Compactness and lowered porosity in the used substrates were probably caused by decomposition. The results of cation analysis showed the possible destruction of cell wall of rice hulls. Abundant $Ca^{2+}$ in the substrates used for two to three times also indicated the possibility of decomposition. In tomato yield comparison, 15.2% more yield of tomato fruit in a new substrates indicated the negative effects of decomposition of one-time used substrates. Yield decreased in the substrates used for three times. if perlite substrates is used for three years before renewal and the cost of the perlite renewal is counted. 65.3% saving in the cost will be realized with the use of an expanded rice hull substrate. Another positive effect of the expanded rice hull substrate is the decrease of environmental contamination.n.

  • PDF