• 제목/요약/키워드: Exogenous Feed Enzymes

검색결과 23건 처리시간 0.018초

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권2호
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권11호
    • /
    • pp.1659-1676
    • /
    • 2002
  • Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

Effects of Enzyme Supplementation on Growth, Intestinal Content Viscosity, and Digestive Enzyme Activities in Growing Pigs Fed Rough Rice-based Diet

  • Wang, M.Q.;Xu, Z.R.;Sun, J.Y.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.270-276
    • /
    • 2008
  • The purpose of the present study was to investigate the effects of exogenous non-starch polysaccharides (NSP) enzymes on performance, intestinal content viscosity and digestive enzyme activities of growing pigs fed a rough rice-based diet. A total of 60 crossbred barrows with an initial body weight of 35.16 kg (SD = 0.82) were blocked by body weight and randomly assigned to two treatments with three replications. Each group was fed the diet based on rice with or without exogenous NSP enzymes (2 g/kg of diet). During the 70 days of the feeding trial, all pigs were given free access to feed and water. At the end of the feeding trial, six pigs from each treatment were randomly selected and slaughtered to collect intestinal digesta, intestinal mucosa, and pancreas. The addition of NSP enzymes improved average daily gain (p<0.05) and feed:gain (p<0.05), and decreased viscosity of digesta in the jejunum (p<0.001) and ileum (p<0.01) of pigs. The supplementation of NSP enzymes increased activities of protease (p<0.01), trypsin (p<0.01) and ${\alpha}$-amylase (p<0.05) in duodenal contents. However, digestive enzymes in the pancreas, jejunal and ileal mucosa were unaffected by the supplemental NSP enzymes (p>0.10). The results indicate that the addition of NSP enzymes to rough rice-based diets improved performance of pigs, reduced viscosity and increased digestive activity in the small intestine.

Supplemental Enzymes, Yeast Culture and Effective Micro-organism Cultureto Enhance the Performance of Rabbits Fed Diets Containing High Levels of Rice Bran

  • Shanmuganathan, T.;Samarasinghe, K.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.678-683
    • /
    • 2004
  • An experiment was carried out to study the effects of exogenous enzymes (cellulases and proteases), yeast culture and effective micro-organism (EM) culture on feed digestibility and the performance of rabbits fed rice bran rich diets over a period of ten weeks. Twenty four, 8 to 9 weeks old male and female New Zealand White rabbits were allotted to 4 dietary treatments; a basal (control) feed containing 43% rice bran, basal feed supplemented with either enzymes, yeast culture or EM. Individual feed intake, body weight gain, nutrient digestibility, carcass characteristics and feed cost were studied. Sex of the rabbits had no significant (p<0.05) influence on the parameters studied. The control group showed the lowest daily feed intake (104.8 g), body weight gain (12.8 g) and the highest feed/gain ratio (8.20 g/g). The highest daily feed intake (114.3 g), body weight gain (20.42 g) and the lowest feed/gain ratio (5.60) were observed with enzymes. Compared to the control, yeast significantly (p<0.05) improved the feed intake, body weight gain and feed/gain ratio by 4.9, 34.4 and 22.0%, respectively, while EM improved (p<0.05) them by 4.0, 32.6 and 21.6%, respectively. All the additives improved (p<0.05) the digestibility of dry matter, crude protein, crude fiber and energy by 4.9-8.7, 3.6-10.7, 5.9-8.3 and 4.3-6.4%, respectively. Higher weights of pancreas (by 38.5-56.4%) and caecum (by 13.1-26.8%, compared to the control) were recorded with all additives but liver weight was increased only by yeast (24.5%) and enzymes (26.7%). Significantly (p<0.05) higher carcass recovery percentages were observed with enzymes (60.55), yeast (60.47) and EM (56.60) as compared to the control (48.52). Enzymes, yeast and EM reduced (p<0.05) the feed cost per kg live weight by 23.8, 15.9 and 15.5%, respectively. Results revealed that enzymes, yeast culture and EM can be used to improve the feeding value of agro-industrial by-products for rabbits in Sri Lanka and thereby to reduce the feed cost. Under the present feeding system, enzyme supplement was the best.

Dietary Exogenous α-Amylase Modulates the Nutrient Digestibility, Digestive Enzyme Activity, Growth-Related Gene Expression, and Diet Degradation Rate of Olive Flounder (Paralichthys olivaceus)

  • Md. Tawheed Hasan;Hyeon Jong Kim;Sang-Woo Hur;Seong-Mok Jeong;Kang-Woong Kim;Seunghan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1390-1401
    • /
    • 2023
  • In this study, a 12-week feeding experiment was conducted to characterize the effects of exogenous α-amylase on the growth, feed utilization, digestibility, plasma α-amylase activity, feed degradation rate, and fecal particle size of olive flounder (Paralichthys olivaceus). Diet was supplemented with 0 (AA0; control), 100 (AA100), 200 (AA200), or 400 (AA400) mg/kg of α-amylase, respectively. Fish (273.1 ± 2.3 g) were stocked into 12 tanks (25 fish/1,000-L tank) and 3 tanks were randomly selected for each diet group. As a result, α-amylase was found to have no significant effects (p ≥ 0.05) on the growth, feed utilization parameters, and whole-body proximate compositions. α-Amylase-treated fish exhibited only a significant increase in the apparent digestibility coefficient of carbohydrates compared to the controls. In addition, in vitro analyses revealed that α-amylase dose-dependently increased (p < 0.05) the feed degradation rate, while photographs of the intestinal content after 2, 4, and 8 h of feeding demonstrated an improved degradation rate in the α-amylase-treated groups. Plasma α-amylase content was higher in the AA200 and AA400 groups, whereas the control group produced significantly larger-sized fecal particles (90% size class) than these two groups. In the intestine, no changes were observed in the expression levels of the immune-related TNF-α, IL-1β, IL-2, immunoglobulin-M, HSP-70, lysozyme, and amylase alpha-2A. However, growth-related genes IGF-1, IGF-2, TGF-β3, and growth hormone genes were upregulated in muscle tissues. Collectively, exogenous α-amylase has positive roles in the modulation of the digestibility coefficient, blood α-amylase concentration, growth-related gene expression, and diet degradation for improved digestion in olive flounder.

Effects of Tween 80 on In Vitro Fermentation of Silages and Interactive Effects of Tween 80, Monensin and Exogenous Fibrolytic Enzymes on Growth Performance by Feedlot Cattle

  • Wang, Y.;McAllister, T.A.;Baah, J.;Wilde, R.;Beauchemin, K.A.;Rode, L.M.;Shelford, J.A.;Kamande, G.M.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권7호
    • /
    • pp.968-978
    • /
    • 2003
  • The effects of monensin, Tween 80 and exogenous fibrolytic enzymes on ruminal fermentation and animal performance were studied in vitro and in vivo. In Expt 1, the effects of the surfactant Tween 80 (0.2% wt/wt, DM basis) on ruminal fermentation of alfalfa, corn and orchardgrass silages were investigated using in vitro gas production techniques. Tween 80 did not affect (p>0.05) cumulative gas production at 24 h, but it reduced (p<0.05) the lag in fermentation of all three silages. With corn silage and orchardgrass silage, gas production rates and concentrations of total volatile fatty acids (VFA) were increased (p<0.05) by Tween 80; with alfalfa silage, they were reduced (p<0.05). Tween 80 increased (p<0.05) the proportion of propionate in total VFA, and reduced (p<0.05) acetate to propionate ratios (A:P) with all three silages. In Expt 2, exogenous fibrolytic enzymes (E; at 0, 37.5 or 75 g/tonne DM), monensin (M; at 0 or 25 ppm and Tween 80 (T; at 0 or 2 L/tonne DM) were added alone or in combination to backgrounding and finishing diets fed to 320 crossbred steers in a feeding trial with a $3{\times}2{\times}$2 factorial arrangement of treatments. The backgrounding and finishing diets contained barley grain and barley silage in ratios of 57.8:42.2 and 93.5:6.5 (DM basis), respectively. Added alone, none of the additives affected DM intake (p>0.1) in the backgrounding or in the finishing period, but interactive $M{\times}T$ effects were observed in the finishing period (p=0.02) and overall (p=0.04). In the finishing period, T without M tended to reduce DM intake (p=0.11), but T with M increased (p=0.05) DM intake. Monensin increased average daily gain (ADG) during backgrounding (p=0.07) and finishing (p=0.01), and this ionophore also improved overall feed efficiency (p=0.02). Warm carcass weight was increased (p<0.001) by M, but dressing percentage was reduced (p=0.07). In the backgrounding period, T increased ADG by 7% (p=0.06). Enzymes increased (p=0.07) ADG by 5 and 6% (low and high application rates, respectively) during backgrounding, but did not affect (p>0.10) ADG during finishing, or overall feed efficiency. Whereas T enhanced the positive effects of M on ADG during backgrounding (p=0.04) and overall (p=0.05), it had no impact (p>0.1) on the effects of E. Interactions between M and T suggest that the surfactant may have potential for enhancing the positive effects of monensin on beef production, but this requires further research.

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

Effects of Different Levels of Supplementary Alpha-amylase on Digestive Enzyme Activities and Pancreatic Amylase mRNA Expression of Young Broilers

  • Jiang, Zhengyu;Zhou, Yanmin;Lu, Fuzeng;Han, Zhaoyu;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.97-102
    • /
    • 2008
  • Four hundred and forty 1-day-old Arbor Acre broilers were fed commercial starter diets with 0, 250, 750 and 2,250 mg/kg of an alpha-amylase preparation from 1 to 21 days of age to investigate the effects of an exogenous enzyme on growth performance, activities of digestive enzymes in the pancreas and anterior intestinal contents and pancreatic amylase mRNA expression. Body weight gain (BWG) and average daily gain (ADG) increased linearly (p<0.01) with increasing levels of supplementary amylase but feed conversion ratio (FCR) was not affected. There was a negative quadratic change of protease and amylase in the small intestinal contents with the increase of supplementary amylase level. The activity of intestinal trypsin was also increased (p<0.05). Lipase was unaffected by amylase supplementation (p>0.05). The pancreatic protease, trypsin, and lipase were not affected by exogenous amylase levels. Consistent with the tendency for a linear depression of amylase activity, pancreatic ${\alpha}$-amylase mRNA was down-regulated by dietary amylase supplementation. The present study suggested that oral administration of exogenous amylase affected activities of intestinal enzymes and the production of pancreatic digestive enzymes in a dose-dependent manner.

Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets

  • Yang, Y.Y.;Fan, Y.F.;Cao, Y.H.;Guo, P.P.;Dong, B.;Ma, Y. X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.57-63
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of adding exogenous phytase and xylanase, individually or in combination, as well as pelleting on nutrient digestibility, available energy content of wheat and the performance of growing pigs fed wheat-based diets. Methods: In Experiment 1, forty-eight barrows with an initial body weight of $35.9{\pm}0.6kg$ were randomly assigned to a $2{\times}4$ factorial experiment with the main effects being feed form (pellet vs meal) and enzyme supplementation (none, 10,000 U/kg phytase, 4,000 U/kg xylanase or 10,000 U/kg phytase plus 4,000 U/kg xylanase). The basal diet contained 97.8% wheat. Pigs were placed in metabolic cages for a 7-d adaptation period followed by a 5-d total collection of feces and urine. Nutrient digestibility and available energy content were determined. Experiment 2 was conducted to evaluate the effects of pelleting and enzymes on performance of wheat for growing pigs. In this experiment, 180 growing pigs ($35.2{\pm}9.0kg\;BW$) were allocated to 1 of 6 treatments according to a $2{\times}3$ factorial treatment arrangement with the main effects being feed form (meal vs pellet) and enzyme supplementation (0, 2,500 or 5,000 U/kg xylanase). Results: In Experiment 1, there were no interactions between feed form and enzyme supplementation. Pelleting reduced the digestibility of acid detergent fiber (ADF) by 6.4 percentage units (p<0.01), increased the digestibility of energy by 0.6 percentage units (p<0.05), and tended to improve the digestibility of crude protein by 0.5 percentage units (p = 0.07) compared with diets in mash form. The addition of phytase improved the digestibility of phosphorus (p<0.01) and calcium (p<0.01) by 6.9 and 7.6 percentage units respectively compared with control group. Adding xylanase tended to increase the digestibility of crude protein by 1.0 percentage units (p = 0.09) and increased the digestibility of neutral detergent fiber (NDF) (p<0.01) compared with control group. Supplementation of the xylanase-phytase combination improved the digestibility of phosphorus (p<0.01) but impaired NDF digestibility (p<0.05) compared with adding xylanase alone. In Experiment 2, adding xylanase increased average daily gain (p<0.01) and linearly improved the feed:gain ratio (p<0.01) compared with control group. Conclusion: Pelleting improved energy digestibility but decreased ADF digestibility. Adding xylanase increased crude protein digestibility and pig performance. Phytase increased the apparent total tract digestibility of phosphorus and calcium. The combination of phytase-xylanase supplementation impaired the effects of xylanase on NDF digestibility.

Influence of Palm Kernel Meal Inclusion and Exogenous Enzyme Supplementation on Growth Performance, Energy Utilization, and Nutrient Digestibility in Young Broilers

  • Abdollahi, M.R.;Hosking, B.J.;Ning, D.;Ravindran, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.539-548
    • /
    • 2016
  • The objective of the present study was to investigate the influence of palm kernel meal (PKM) inclusion and exogenous enzyme supplementation on growth performance, nitrogen-corrected apparent metabolizable energy (AMEn), coefficient of apparent ileal digestibility (CAID) and total tract retention of nutrients in young broilers fed corn-based diets. Four inclusion levels of PKM (no PKM [PKM0], 8% [PKM8], 16% [PKM16], and 24% [PKM24]) and two enzyme additions were evaluated in a $4{\times}2$ factorial arrangement of treatments. A total of 384, one-d-old male broilers (Ross 308) were individually weighed and allocated to 48 cages (eight broilers/cage), and cages were randomly assigned to eight dietary treatments. Results indicated that the inclusion of 8% and 16% PKM increased (p<0.05) the weight gain compared to the PKM0 diet. Birds fed the PKM8 diets had the highest (p<0.05) feed intake. Weight gain and feed intake were severely reduced (p<0.05) by feeding the PKM24 diet. Enzyme supplementation increased weight gain (p<0.05), independent of PKM inclusion level. In PKM0 and PKM8 diets, enzyme addition significantly (p<0.05) lowered feed conversion ratio (FCR); whereas enzyme addition had no effect on FCR of birds fed PKM16 and PKM24 diets. In PKM0 and PKM16 diets, enzyme addition significantly (p<0.05) increased CAID of nitrogen and energy but had no effect in the PKM8 and PKM24 diets. Inclusion of PKM into the basal diet, irrespective of inclusion level, enhanced (p<0.05) starch and fat digestibility. Inclusion of PKM at 16% and 24% resulted in similar CAID of neutral detergent fiber (NDF) but higher (p<0.05) than that of the PKM0 and PKM8 diets. Enzyme addition, regardless of the level of PKM inclusion, significantly (p<0.05) increased CAID of NDF. There was a significant (p<0.05) decrease in AMEn with PKM inclusion of 24%. The present data suggest that inclusion of PKM in broiler diets could be optimized if PKM-containing diets are formulated based on digestible amino acid contents and supplemented with exogenous enzymes. If amino acid digestibility and AME of PKM considered in the formulation, it can be included in broiler diets up to 16% with no deleterious effects on growth performance.