• 제목/요약/키워드: Exit temperature

검색결과 412건 처리시간 0.028초

습공기사이클 냉동시스템의 성능해석 (Performance Analysis of a Wet Air-Cycle Refrigeration System)

  • 원성필
    • 설비공학논문집
    • /
    • 제26권11호
    • /
    • pp.504-511
    • /
    • 2014
  • The objective of this study is to theoretically analyze the performance of an open wet air-cycle refrigeration system, which nowadays is increasingly generating environmental concern. The temperature and relative humidity of the outside air are selected as the most important parameters. As the temperature and relative humidity of the outside air increase, the pressure ratio of the ACM compressor is determined to be nearly constant, the air temperature at the exit of the system increases, and the amount of condensed water, the cooling capacity, the COP, and the total entropy production rate increase overall. The effects of the effectiveness of the heat exchanger and the efficiency of the turbine on the performance are greater than that of the efficiency of the ACM compressor. Also, the performance of the wet air-cycle refrigeration system with two heat exchangers is enhanced, with a high COP and low total entropy production rate, compared to the system with a single heat exchanger.

대용량 청정 공기 가열 장치 설계 (Design of Large Capacity Clean Air Heater)

  • 김정우;정광수;전민준;이규준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.115-118
    • /
    • 2010
  • 공기 가열 장치는 크게 연소식과 열교환식 2가지가 있으며, 본 논문은 공기를 오염시키지 않은 열교환 방식인 청정 공기 가열 장치의 설계 방법을 기술하였다. 가열 장치는 크게 연소기 (Burner), 가열로 (Furnace), 열교환기 (Heat Exchanger), 배기구로 구성되어 되며, 가열되는 공기 유량과 입/출구 온도값으로부터 가열원인 연소기의 열용량과 연소기 연료인 LNG의 소요량을 구한다. 열교환기 내부에서 연소기의 뜨거운 연소가스와 가열되는 차가운 공기간의 열매체를 통한 간접 열교환이 이루어지므로, 가열되는 공기의 입/출구 온도에서 열교환기의 용량, 크기, 작동 최대 온도를 얻을 수 있게 된다.

  • PDF

멀티버너 보일러용 열교환기 모듈 특성 시험 - 모듈 순서에 따른 특성결과 - (Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler)

  • 강새별;김종진;안준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3053-3058
    • /
    • 2008
  • We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. The results show that if module C is placed at second stage (the 1st stage is always module O, bare tube module), there is no need to attach an additional heat exchanger module. In this case the exit temperature of module C is low enough to enter an economizer which is more effective in heat recovery than a heat exchanger module.

  • PDF

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

축소형 고공환경모사 시험에서의 노즐 유동에 관한 연구 (A Study on the Nozzle Flow in the Sub-scale High-Altitude Test)

  • 최지선;이성민;이희준;고영성;김선진;이정민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1011-1015
    • /
    • 2017
  • 본 연구에서는 고공환경을 모사하는 축소형 상온 시험에서의 노즐 유동에 관한 수치적, 실험적 연구를 진행하였다. 이론 계산에서는 노즐 출구의 온도가 액화점보다 낮게 계산이 되어 유체가 상변화 지점에서 존재하게 된다. 또한 수치해석 결과 이론 계산보다 높지만 액화되는 온도보다는 낮았다. 실제 환경에서의 검증을 위하여 상온 시험을 한 결과 이론과 해석보다는 월등히 높은 온도로 확인되었다. 이는 이론 계산 시 단열이라고 가정을 하며 문제를 풀지만 실험은 단열이 아닌 외부와의 열 교환이 일어나게 된다. 결과적으로 상온 시험 할 때에 상변화 지점보다 높은 온도인 것을 확인하였다.

  • PDF

물제트의 노즐 입구온도변화에 따른 증발특성 해석 (An Analysis of Flashing Jet Behavior of Pressurized Water)

  • 김부상;김학덕;임희창;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

T-분지관이 부착된 벤튜리관의 유동특성과 응축수 유입에 대한 수치해석 연구 (A numerical study on the flow characteristics and condensed water inflow in the Venturi tube with T-branch tube)

  • 김승일;박상희;황정규
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.173-181
    • /
    • 2019
  • This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.

고분자전해질형 단위 연료전지의 공기극 유로 채널 내 온도 분포와 플러딩 현상에 관한 연구 (A Study of Temperature Distribution and Flooding Phenomena of Cathode now Channel in a PEM Unit Fuel Cell)

  • 김한상;하태훈;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.101-104
    • /
    • 2006
  • Water management is considered to be one of the main issues to be addressed for the performance improvement of proton exchange membrane (PEM) fuel cell. For good water management, the detailed information on the water distribution inside an operating PEM fuel cell should be available to main an adequate level of hydration in the PEM While avoiding performance decline due to liquid rater flooding. For the PEM fuel cell to be commercially viable as vehicle applications, the flooding on the cathode side should be minimized during the fuel ceil operation. In this study to investigate cathode flooding and its relation with temperature distribution in flow channels, visualization study was performed on the cathode side of a PEM fuel cell. For the direct visualization of temperature field and water transport in cathode flow channels, a transparent cell was designed and manufactured using quartz window. Water transport and its two-phase flow characteristics in flow channels were investigated experimentally. Also, the visualization of temperature distribution In cathode flow channels was made by using IR camera. Results indicated that the temperature rise near the exit of cathode flow channel was found. It is found that this area corresponds to the flooding area from both temperature and flooding visualization results It is expected that this study can effectively contribute to get the detailed data on water transport linked with heat management during the operation of a PEM fuel cell

  • PDF

날개통과온도 변화에 기반한 발전용 가스터빈의 운전관리 개선 (Improved Operation Criteria for a Power Generation Gas Turbine on the Blade Path Temperature Variations)

  • 이용일;이재헌
    • 플랜트 저널
    • /
    • 제18권4호
    • /
    • pp.48-57
    • /
    • 2023
  • 본 연구에서는 희박예혼합 연소방식을 채택하고 있는 F급 가스터빈에서 연소불안정을 사전에 감지하기 위한 운전관리 개선방안에 대해 고찰했다. 가스터빈 출구에 방사형으로 설치된 16개의 날개통과온도 열전대 데이터를 수집하여 개별 날개통과온도 변화량을 분석하였다. 정상 연소상태 조건의 일주일간 개별 날개통과온도 누적변화량은 최대 26℃로 확인됐다. 반면 연소불안정 발생 시에는 대부분 수일 전부터 개별 열전대에서 온도변화량이 증가하는 전조증상을 확인할 수 있었다. 따라서 기존의 날개통과온도 최대편차 운전관리와 함께 개별 날개통과온도 변화량 감시방법을 추가하면 연소불안정을 조기에 인지할 수 있다. 본 연구결과를 바탕으로 개별 날개통과온도가 10일간 누적변화량 50℃ 이상 초과 시에 점검 및 정비를 하는 것이 적정한 관리기준으로 판단된다.

  • PDF

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.