• Title/Summary/Keyword: Existence of proofs

Search Result 16, Processing Time 0.023 seconds

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

The Notion of Truth in Intuitionistic Type Theory (직관주의적 유형론에서의 진리개념)

  • Chung, Inkyo
    • Korean Journal of Logic
    • /
    • v.16 no.3
    • /
    • pp.407-436
    • /
    • 2013
  • I examine the notion of truth in the intuitionistic type theory and provide a better explanation of the objective intuitionistic conception of mathematical truth than that of Dag Prawitz. After a brief explanation of the distinction among proposition, type and judgement in comparison with Frege's theory of judgement, I examine the judgements of the form 'A true' in the intuitionistic type theory and explain how the determinacy of the existence of proofs can be understood intuitionistically. I also examine how the existential judgements of the form 'Pf(A) exists' should be understood. In particular, I diagnose the reason why such existential judgements do not have propositional contents. I criticize an understanding of the existential judgements as elliptical judgements. I argue that, at least in two respects, the notion of truth explained in this paper is a more advanced version of the objective intuitionistic conception of mathematical truth than that provided by Prawitz. I briefly consider a subjectivist's objection to the conception of truth explained in this paper and provide an answer to it.

  • PDF

The Vicious Circle in Calculating Circle Area and the Local Organization (원의 넓이에 관련된 순환논법과 국소적 조직화)

  • Choi, Young-Gi;Hong, Gap-Ju
    • School Mathematics
    • /
    • v.8 no.3
    • /
    • pp.291-300
    • /
    • 2006
  • Proofs in school mathematics are regarded as the procedures to examine a proposition's truth or falsehood. However, they are not based on an axiomatic system in general. This implies the possible existence of vicious circles in proofs in school mathematics. The concept of proof can be more completely acquired when accompanied with concept of circular reasoning and necessity of axiomatic system. Therefore, it is necessary to discuss on the axiomatic system in school mathematics curriculum. The vicious circle can be found in computing an area of a circle by using definite integral in differentiation/integration part of high school textbooks. This paper will first illustrate this in detail and then offer several comments on the axiomatic methods related to the dissolution of that circular reasoning. To further the discussion, Archimedes' derivation for the area of a circle will be considered next. Finally, several arguments on circular reasoning, local organization, and axiomatic system in school curriculum will be presented at the end of the paper.

  • PDF

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

  • Han, Song-Ho;Kim, Myeong-Hwan;Park, Jong An.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 1989
  • Recently many authors [2,3,5,6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory. On the other hand Kirk and Schonberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schonberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions. Their fundamental tool of proofs is based on a precise analysis of the orbit of resolvents of m-accretive operator at a specified point in its domain. In this paper we obtain a sufficient condition for m-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schonberg [10] and some results of Morales [12, 13] and Torrejon[15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schonberg [10].

  • PDF

S-SHAPED CONNECTED COMPONENT FOR A NONLINEAR DIRICHLET PROBLEM INVOLVING MEAN CURVATURE OPERATOR IN ONE-DIMENSION MINKOWSKI SPACE

  • Ma, Ruyun;Xu, Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1891-1908
    • /
    • 2018
  • In this paper, we investigate the existence of an S-shaped connected component in the set of positive solutions of the Dirichlet problem of the one-dimension Minkowski-curvature equation $$\{\(\frac{u^{\prime}}{\sqrt{1-u^{{\prime}2}}}\)^{\prime}+{\lambda}a(x)f(u)=0,\;x{\in}(0,1),\\u(0)=u(1)=0$$, where ${\lambda}$ is a positive parameter, $f{\in}C[0,{\infty})$, $a{\in}C[0,1]$. The proofs of main results are based upon the bifurcation techniques.

Proofs of Utkin's Theorem for MIMO Uncertain Integral Linear Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2014
  • The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved. The effectiveness of the main results is verified through an illustrative example and simulation study.