• Title/Summary/Keyword: Exhaust control valve

Search Result 73, Processing Time 0.034 seconds

The Throttle Valve Control of engine Dynamometer system Using Fuzzy Look-up Table (퍼지 Look-up Table을 이용한 엔진 다이나모메타 시스템의 트로틀 벨브 제어)

  • 이상윤;이팔진;신위재;김치원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.125-130
    • /
    • 1995
  • Recently, the vehicle engine requried precision control of Air-Fuel rate and rigid restriction of exhaust gas. Therefore, we demanded excellent measuring equipment so as to improve of engine performance. Specially, throttle valve control is very important part in the engine control, because structure of engine dynamometer system is very important part in the engine control, because structure of engine dynamometer system is very complicate and it has nonlinear elements which is influenced of disturbance about vibration, a heat, a cooling, energy loss so on. In this study, we propose the method that the control technique using Fuzzy Look-up table and we obtained the satisfying result from realized the control system.

  • PDF

An Experimental Study on Spark Timing Effect for Fast warmup of Catalyst to Cold Start Operation of an SI Engine (가솔린기관의 냉시동시 촉매 가열 촉진을 위한 점화시기 영향에 대한 실험적 연구)

  • Kwon, Y.W.;Ham, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • On cold start operation of an SI engine, a catalyst shows poor performance before it reaches activation temperature. Therefore, fast warmup of the catalyst is very crucial to reduce harmful emissions. In this study, an appropriate control strategy is investigated to increase exhaust gas temperature through changes of spark timing. Combustion stability is also considered at the same time. Exhaust gas temperature and pressure of combustion chamber are measured to investigate the effects of spark timings on cold start and idle performance. Experiments showed that retarded spark timing promotes the combustion at the end of expansion stroke and increases exhaust gas temperature during cold start.

The influence of Mixture Flow and the Ignition Conditions on the Initial Flame Propagation Characteristics (혼합기의 유동 및 점화조건에 따른 초기화염의 전파특성)

  • Kim, Jin-Young;Lee, Joong-Soon;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-64
    • /
    • 1999
  • Initial flame development and propagation were visualized under the new ignition system developed to estimate the effects of ignition characteristics on the engine performance in a port injection SI engine. Effects of intake air flow characteristics were also investigated by three different kinds of the swirl control valve. Experiments were performed in an optical single cylinder engine modified form a commercial engine. Flame images were captured through the quartz window mounted in the piston by the high speed video camera and analyzed to compare initial flame development. Results show that IMEP tends to rise slightly as the ignition duration gets longer. The direction of flame propagation is decisively governed by the in-cylinder flow motion. Every flame grows toward the exhaust valve forming a kind of turbulent flame. Initial flame propaagation characteristics are very similar to ones analyzed form pressure data.

  • PDF

Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines (승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구)

  • Hong, Seungwoo;Park, Inseok;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

A Study on the combustion characteristcs for backpressure of exhaust system in SI engine (배기(排氣)시스템의 배압(背壓)과 연소특성(燃燒特性)에 관한 연구)

  • Park, Dai-Un;Park, Kyoung-Suk;Park, Se-Jong;Son, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.206-212
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile, it is needed to consider the pulsation noise, air current noise, vibration of air pipe which generate the intake and exhaust noise of the automobile. Moreover, the discharge sounds, intake sound, radiation sound, transmitted sound are occurred. To reduce this influence, the variable valve is needed and to control these factors, path transformation muffler and active type muffler are needed. While engine efficiency could be reduced with this transformationand resistance by the pressure, thermal property. In this study, how to design exhaust systems yielding higher condversion efficiency, lower backpressure and optimize the performance. this study is recommended for exhaust system and designers and engineers involved in SI engine exhaust system and it will furnish information for you to design more efficient.

  • PDF

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

Electronic engine control by use of personal computer (퍼스날 컴퓨터를 이용한 전자엔진 제어)

  • 함영국;류태우;서병설;이양희;최준영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.975-980
    • /
    • 1992
  • The purpose of this paper is to perform the engine driving well with controling the IAC(Idle Air Control) valve which controls the demand-air when the abrput increasing or decrasing and the idling, the fuel by controlling the injector, and the spark timing. This plant is the complex system because this should be controlled each other and each one affects other. We have controlled this system effectively by using Personal Computer in order to reduce the exhaust gas and improve the engine performance.

  • PDF

Characterics of Meter-In / Meter-Out Circuits to pneumatic System (공압회로에서 미터인 회로와 미터아웃 회로의 특성 비교)

  • 박재범;염만오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.446-450
    • /
    • 2002
  • Pneumatic system has been mainly used as main equipment for actuation and control of compressed air force in manufacturing industry, pneumatic circuit for the most part is used in Meter-Out circuit. Meter-Out circuit method is Flow Control Valve to fit in exhaust part of cylinder port. In the reverse, Meter-In circuit is Flow Control Valve to fit in input part of cylinder port. This study examines the dynamic characteristics comparison of Meter-In and Meter-Out Circuits in the pneumatic circuits. The results of the experimental research are obtained to the followings: i ) System Response is Meter-In Circuit more than Meter-Out one before cushion zone. ii) we conjectured that the collision of piston and head cover is ease to collide Meter-In Circuit more than Meter-Out one at the stroke end part.

  • PDF

The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging (Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성)

  • Cho, Kwan-Yeon;Cho, Hyung-Wook;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.