• Title/Summary/Keyword: Exhaust Efficiency

Search Result 831, Processing Time 0.029 seconds

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles (습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.

The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption (간접열탈착방식을 이용한 원유오염토양 정화효율 평가)

  • Lee, In;Kim, Jong-Sung;Jung, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

Development of the Quick Exhaust Valve to Blowing the Intake Filter for the Thermal Power Plant (화력발전소 흡입필터 세정용 급속 배기 밸브의 개발)

  • Jeong, C.S.;Lee, H.U.;Jeong, Y.M.;Lee, C.D.;Yang, S.Y.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.548-552
    • /
    • 2010
  • The air suction filter of the power plant decrease the dust and impurities of suction air that reduce the life and efficiency of the boiler. The suction efficiency of the air filter falls with the dust and impurities when the time of use comes to be long. Therefore, the various contaminant of the filter must remove periodically. This paper presents a developed quick exhaust valve to use in the thermo-electric power plant. to removing contaminants on the filter, the blowing is done shortly by air pressure. The Air flowed out to the out side from the inside of the filter. The performance test of the developed valve is done by making a test-bench according to JIS and KS standards. The efficiency is found higher than the existing related valve.

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

An Experimental Study on the Reduction of Exhaust Emissions by using Glow Plug during Cold-start and Warm-up in Gasoline Engine (가솔린기관의 냉시동시 Glow Plug를 이용한 배기가스저감에 관한 실험적 연구)

  • 문영호;김종호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • In order to reduce exhaust omissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to directly reduce engine out exhaust emissions, during cold starting and warm up process. Therefore many researchers have been attracted to develop an early fuel evaporator(EFE) by Introducing a ceramic heater fur a solution of engine out exhaust emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has not been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug far EFE. Impinging spray using heated and unheated glow plug helps the vaporization of the fuel and heat up the three way catalyst sufficiently. The amount of CO, and UHC is reduced overall. The amount of NOx is higher at the initial stage, but become lower as time goes on than without glow plug.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

A Case Study for Reasonable Emission Regulation of Odor Exhaust Stack (악취 배출구의 합리적인 배출규제를 위한 사례연구)

  • Park, Jeong-Ho;Lee, Hyung-Chun
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.155-161
    • /
    • 2016
  • In this study, field experiment, odor simulator, and dispersion modeling were used to evaluate the odor impact from J sewage sludge treatment facility. The height and flow rate of exhaust stack at this facility were 22.3 m and $100Nm^3/min$. The mean odor concentrations of the wet scrubber inlet and exhaust stack were $267{\pm}160$ and $93{\pm}44OU/m^3$, respectively. The odor removal efficiency of wet scrubber showed 65%. The odor simulator is used for the regulated standard calculation of the exhaust pipe(stack). Resulting odor emission rate(OER) by odor simulator was $2.4{\times}10^6(24,000OU/m^3)$. The forecasting result by Screen3 modeling showed that odor exhaust concentration up to $30,000OU/m^3$ was't exceeded maximum allowable emission level on site boundary($15OU/m^3$).

The Development and Performance Test of a Small Wood Boiler (소형 화목보일러의 개발 및 성능시험)

  • Kim, Sa-Ryang;Lee, Jong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.491-497
    • /
    • 2002
  • In the present study, a new wood boiler was developed through the performance test. The efficiency of the boiler was obtained up to about 63.7%, which is 67% higher than that of conventional wood boiler, about 38.2%. The structure of the new boiler is more complicated than the conventional boiler. The passage of combustion gas is sufficiently long to exchange heat well with heating water. Therefore, the obtained efficiency is so high, and the temperature of exhaust gas was lower than 200$^{\circ}C$, which is as low as that of light oil boiler. The composition of exhaust gas was measured, and the CO gas concentration was obtained more than 3000 ppm. So, it seems that more study is needed to lower the concentration of CO gas.