• Title/Summary/Keyword: Execution error

Search Result 188, Processing Time 0.036 seconds

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Evaluation of Multivariate Stream Data Reduction Techniques (다변량 스트림 데이터 축소 기법 평가)

  • Jung, Hung-Jo;Seo, Sung-Bo;Cheol, Kyung-Joo;Park, Jeong-Seok;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.889-900
    • /
    • 2006
  • Even though sensor networks are different in user requests and data characteristics depending on each application area, the existing researches on stream data transmission problem focus on the performance improvement of their methods rather than considering the original characteristic of stream data. In this paper, we introduce a hierarchical or distributed sensor network architecture and data model, and then evaluate the multivariate data reduction methods suitable for user requirements and data features so as to apply reduction methods alternatively. To assess the relative performance of the proposed multivariate data reduction methods, we used the conventional techniques, such as Wavelet, HCL(Hierarchical Clustering), Sampling and SVD (Singular Value Decomposition) as well as the experimental data sets, such as multivariate time series, synthetic data and robot execution failure data. The experimental results shows that SVD and Sampling method are superior to Wavelet and HCL ia respect to the relative error ratio and execution time. Especially, since relative error ratio of each data reduction method is different according to data characteristic, it shows a good performance using the selective data reduction method for the experimental data set. The findings reported in this paper can serve as a useful guideline for sensor network application design and construction including multivariate stream data.

A Fast Algorithm of the Belief Propagation Stereo Method (신뢰전파 스테레오 기법의 고속 알고리즘)

  • Choi, Young-Seok;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The belief propagation method that has been studied recently yields good performance in disparity extraction. The method in which a target function is modeled as an energy function based on Markov random field(MRF), solves the stereo matching problem by finding the disparity to minimize the energy function. MRF models provide robust and unified framework for vision problem such as stereo and image restoration. the belief propagation method produces quite correct results, but it has difficulty in real time implementation because of higher computational complexity than other stereo methods. To relieve this problem, in this paper, we propose a fast algorithm of the belief propagation method. Energy function consists of a data term and a smoothness tern. The data term usually corresponds to the difference in brightness between correspondences, and smoothness term indicates the continuity of adjacent pixels. Smoothness information is created from messages, which are assigned using four different message arrays for the pixel positions adjacent in four directions. The processing time for four message arrays dominates 80 percent of the whole program execution time. In the proposed method, we propose an algorithm that dramatically reduces the processing time require in message calculation, since the message.; are not produced in four arrays but in a single array. Tn the last step of disparity extraction process, the messages are called in the single integrated array and this algorithm requires 1/4 computational complexity of the conventional method. Our method is evaluated by comparing the disparity error rates of our method and the conventional method. Experimental results show that the proposed method remarkably reduces the execution time while it rarely increases disparity error.

Research on the Effect of Perceived Characteristics of RPA on Intention of Adoption (RPA의 지각된 특성이 수용의도에 미치는 영향에 대한 연구)

  • Song, Sun Jung;Lee, Hyoung-Yong
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.283-301
    • /
    • 2021
  • RPA (Robotic Process Automation) technology has recently been spotlighted to preemptively respond to the 4th industrial revolution without spending a lot of time and money to improve various existing business and IT processes. In this study, variables affecting intention to use RPA technology were representatively identified into three positive factors and three negative factors, and the causal relationship between the effects of these variables on actual RPA acceptance intention was examined. After conducting an email survey for general office workers, structural equation analysis (SEM) was performed using SPSS 27.0 and SmartPLS 3.3.5. The second order factor of a positive perception consisting of security, accuracy, and efficiency, and the second order factor of a negative perception consisting of job security, execution error, and fear of introduction failure. The positive perception affected the intention to use RPA through perceived usefulness and perceived ease. It was confirmed that the negative perception has a mediating effect on the intention to use RPA through acceptance conflict. In addition, it was confirmed that the presence or absence of experience in using RPA interacts with perceived ease and has a moderating effect on intention to use RPA. It can be said that there is practical and theoretical implications from the point of view of knowledge management in that it allows companies to recognize and respond to which factors are important from the point of view of companies that want to use RPA.

A Study on the Effects of Perceived Risk Factors of RPA on Acceptance Conflict and Acceptance Intention: RPA Experience, Gender, and ICT Industry as Control Variables (RPA의 지각된 위험요인이 수용갈등 및 수용의도에 미치는 영향: RPA경험, 성별, ICT업종을 통제변수로)

  • Song, Sun-Jung;You, Yen-Yoo;Kim, Sang-Bong
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.137-146
    • /
    • 2022
  • The use of RPA (Robotic Process Automation) has been recently reviewed in various industries, but it seems that it is not being applied to companies faster than ever expected. In this study, three perceived risk factors affecting the acceptance conflict and acceptance intention of RPA technology were proposed and the effects of RPA on acceptance conflict and acceptance intention were investigated using RPA experienced people, gender and ICT industries as control variables. For the research, online survey was conducted targeting office workers and analyzed the results by using SPSS 22.0 and AMOS 22.0. As a result, it was found that among the three perceived risk factors, concern about introduction failure, employment insecurity, and execution errors, employment insecurity and execution errors did not affect the acceptance conflict and acceptance intention of RPA. This research shows that concerns over the introduction failure affected the acceptance conflict and acceptance intention. In addition, the acceptance conflict was judged as a factor of the mediation effect of the acceptance intention. From the perspective of companies that want to apply RPA, the theoretical and practical implications of business management are meaningful in that they can identify and respond to particularly important factors among perceived risks.

Performance Comparison to Solve Angle Ambiguity Needed to Angle of Arrival Estimation in 2D Radar Interferometer (2차원 레이다 간섭계에서 각도 추정 알고리즘의 각도 모호성 해소 성능 비교)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.410-413
    • /
    • 2012
  • This study describes the performance comparison to solve angle ambiguity needed to angle of arrival estimation in 2D radiometer. There are three algorithms to solve its ambiguity such as phase-comparison monopulse method, digital beam-forming method and least square error of the phase difference in 2D radar interferometer. To estimate two direction angles, phase-comparison monopulse method is sequentially applied to azimuth and elevation direction. To analyze the performance of these methods, probability of solving angle ambiguity and execution time have been chosen as performance indexes. Through the Monte Carlo simulation, we have verified that phase-comparison monopulse method is most effective in real-time signal processing application.

Development of the Phoropter Simulator for Education using 3D Virtual Reality (3차원 가상현실을 이용한 교육용 포롭터 시뮬레이터의 개발)

  • Lim, Yong-Moo;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this study, we presented a research about the development of the phoropter simulation program for education using the 3-D virtual reality in order to study the ophthalmic optics rather efficiently. Especially, by putting the facility such as the refractive error analysis of the eyeball in the cyber tutor inside, we have made the learner to learn and confirm the present situation of refractive correction through refractive power of principal meridians. By organizing the system which induces the active involvement of the learner and showing the result of the execution to the learner intuitively, the implementation of the more efficient education-environment can be possible. Consequently, it is expected that this program will be greatly helpful for the optician training as well as the ophthalmic optics education. As a next phase of study, we will develope the development technique of this simulator more and extend the cyber tutor contents more and make the web service version of this program to be provided through the internet network in order to inspire the learning desire of the learner more and more.

  • PDF

On-the-fly Atomicity Violation Repairing Technique for Airborne Health Management Systems (항공기 건전성 관리시스템용 원자성 위배 자율 수리 소프트웨어 기법)

  • Choi, Eu-Teum;Lee, Dong-Su;Jun, Yong-Kee;Lee, Seongjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.547-554
    • /
    • 2020
  • Airborne health management system prevents functional failure caused by errors or faults in the airborne software. On-the-fly repairing atomicity violations (AV) in an ARINC-653 concurrent software is critical for guaranteeing correctness of execution of the software. This paper proposes Repairing-AV which efficiently repairs atomicity violations. The Repairing-AV can diagnose and prevent an error on-the-fly by utilizing the training results of the software and controls access to the shared variable of the thread where the error occurred. The evaluation of the Repairing-AV measures the time overhead by applying the previous work and the Repairing-AV to five synthesis programs containing the atomicity violation. As the result of evaluation, the RepairingAV constantly shows about 1.4x time overhead regardless of count of shared variable access.

The Development of a Human Reliability Analysis System for Safety Assessment of a Nuclear Power Plants (원자력 발전소 안전성 평가를 위한 인간 신뢰도 분석 방법론 개발 및 지원 시스템 구축)

  • Kim, Seung-Hwn;Jung, Won-Dea
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.261-267
    • /
    • 2006
  • In order to perform a probabilistic safety assessment (PSA), it requires a large number of data for various fields. And the quality of a PSA results have become more important thing of the risk assessment. As part of enhancing the PSA qualify, Korea Atomic Energy Research Institute is developing a full power Human Reliability Analysis (HRA) calculator to manage human failure events (HFEs) and to calculate the diagnosis human error probabilities and execution human error probabilities. This paper introduces the development process and an overview of a standard HRA method for nuclear power plants. The study was carried out in three stages; 1) development of the procedures and rules for a standard HRA method. 2) design of a system structure, 3) development of the HRA calculator.

  • PDF

Development of Pollutant Loading Estimation System using GIS (GIS를 이용한 유역별 오염부하량 산정시스템의 개발)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Shim, Jae-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.