• Title/Summary/Keyword: Exciter test

Search Result 72, Processing Time 0.027 seconds

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.

Design of a Shielded Reflection Type Pulsed Eddy Current Probe for the Evaluation of Thickness (두께 평가를 위한 차폐된 반사형 펄스 와전류 탐촉자의 설계)

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.398-408
    • /
    • 2007
  • For better evaluation of material thickness by using the reflection type pulsed eddy current method, various probe models are designed and their response signals, characteristics, and sensitivities to thickness variation are investigated by a numerical analysis method. Since the sensor needs to detect magnetic fields from eddy currents induced in a test material, not from the exciter coil, two types of models that are shielded by the combination of copper and ferrite and only by ferrite are considered. By studying response signals from these shielded probe models, the peak value and the zero crossing time are selected as useful signal features for the evaluation of material thickness. Investigation of sensitivities of these two features shows that the sensitivity of peak value is more useful than that of zero crossing time and that the probe shielded only by ferrite gives much better sensitivity to thickness variation.

A Study on Dynamic Behaviors of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부 후긴장 공법 적용에 따른 무도상 판형교의 동적거동 분석)

  • Choi, Dong-Ho;Choi, Jung-Youl;Choi, Jun-Hyeok;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.160-168
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of external post-tensioning method far steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis, field test and laboratory test fur the lateral dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the lateral dynamic response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease lateral acceleration and deflection on steel plate girder bridge for serviceability. And the external post-tensioning method reduce dynamic maximum displacement(about $10{\sim}24%$), the increase of dynamic safety is predicted by adopting external post-tensioning method. From the dynamic test results of the servicing steel plate girder bridge, it is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method The servicing steel plate girder bridge with external post-tensioning has need of the reasonable reinforcement measures which could be reducing the effect of lateral dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test (랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가)

  • Choi, Young Hyu;Ha, Gyung Bo;An, Ho Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.

A case study on the vibration by fluid induced instability at large steam turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Noh, Chel-Woo;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1066-1071
    • /
    • 2007
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

  • PDF

A Case Study on the Vibration by Fluid Induced Instability at Large Steam Turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Roh, Cheol-Woo;Yoo, Mu-Sang;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.238-246
    • /
    • 2008
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

Dynamic modeling of rubber elements in an engine mount system (엔진 마운트용 고무의 동역학적 모델링)

  • 박석태;정경렬;이종원;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.689-697
    • /
    • 1986
  • In the present work a three degree of freedom modeling of a cylindrical rubber element is studied and its applications to an engine mount system are discussed using a simple test structure. The three degree of freedom model for the rubber mount is composed of three mutually orthogonal springs and dampers jointed at the elastic center of the mount. The test structure is designed and manufactured so simple that its mass center and moment of inertia are accurately and easily obtained. The dynamic properties of each rubber mount, i.e., complex stiffnesses, are experimentally identified using hydraulic exciter and used to predict the modal parameters of the test structure mount system by analytical modal analysis. The predicted modal parameters of the system agree well with those estimated by experimental modal analysis. Hence the three DOF model of the rubber mount is proposed for the practical design of an engine mount system.

Comfortable leisure space and prevention of vibration for large passenger ship (대형 여객선의 쾌적한 레져공간 확보 및 최적 방진설계)

  • Eom, J.K.;Kwun, H.;Park, J.H.;Han, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.368-372
    • /
    • 2008
  • Habitability is one of the most important points when a passenger ship is cruising. In particular, anti-vibration design should be considered preferentially to offer passenger a comfort cabin and leisure space. But, a passenger ship is different from a general commercial ship in the view point of the structural arrangement. It is restricted within narrow limits to reinforce wide panels and local structures of a passenger ship because of its interior design. Moreover, the allowable vibratory limits for a passenger ship are much lower than those of a commercial ship. In this study are introduced the procedure of the vibration analysis, the structural improvement method for prevention of vibration and the results of vibration measurement during exciter test and sea trials.

  • PDF

Intelligent Control of Structural Vibration Using Active Mass Damper (능동질량감쇠기를 이용한 구조물 진동의 지능제어)

  • Kim, Dong-Hyawn;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.286-290
    • /
    • 2000
  • Optimal neuro-control algorithm is extended to the control of a multi-degree-of-freedom structure. An active mass driver(AMD) system on the top roof is used as an exciter. The control signals are made by a multi-layer perceptron(MLP) which is trained by minimizing a sub-optimal performance index. The performance index is a function of both the output responses and the control signals. Structure having nonlinear hysteretic behavior is also trained and controlled by using proposed control algorithm. In training neuro-controller, emulator neural network is not used. Instead, sensitivity-test data are used. Therefore, only one neural network is used for the control system. Both the time delay effect and the dynamics of hydraulic actuator are included in the simulation. Example shows that optimal neuro-control algorithm can be applicable to the multi-degree of freedom structures.

  • PDF

Control of Deckhouse Vibration of a Container Ship due to Higher Order Inertial Excitation of Main Engine (주기관 고차 관성기진력에 의한 콘테이너선 선루진동의 제어)

  • Lee, Soo-Mok;Kim, Won-Hyun;Chung, Kyoon-Yang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.876-880
    • /
    • 2000
  • Vibration problem of deckhouse structure in a container vessel was investigated through the analysis and measurement. The natural frequency of deckhouse structure was found to be resonant with main engine 4th order excitations in the operating range, major sources of which were main engine inertial moment and axial thrust of the propulsion shafting system. To investigate and solve the problem, exciter test was performed to identify the vibration chracteristics of the ship structure and mechanical balancer was installed to compensate the 4th order inertial moment. Measurement results under the conditions with and without balancer operating were compared and analyzed to confirm the balancer effect. Good coincidence was found between the measurement and analysis results, which made it possible to predict the vibration problem in the earlier design stage.

  • PDF