• Title/Summary/Keyword: Excitation System Model

Search Result 454, Processing Time 0.027 seconds

Extraction of Bridge Flutter Derivatives by a Forced Excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.575-582
    • /
    • 2009
  • This study presents the vibration excitation system to extract the aerodynamic stability derivatives which is generally called as flutter derivatives in civil engineering. The system consists of the excitation part to give a forced harmonic motion to the model and the sensing part to measure the aerodynamic forces as well as inertia forces acting on a bridge model. A data processing algorithm for extracting the flutter derivatives from the measured forces is also presented. From the wind tunnel tests, verification of present system was done by comparing the measured and analytical results for rectangular shaped model. The effects of excitation frequencies and amplitudes on flutter derivatives are discussed. Five kinds of actual bridge model were presented from the wind tunnel.

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

A study on the parameter identification & stability analysis of the excitation system (여자 제어시스템의 안정도 및 정수추정에 관한 연구)

  • Rhew, H.S.;Lee, J.H.;Jung, C.K.;Lim, I.H.;Kim, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2187-2189
    • /
    • 1997
  • A performance test has been conducted on the dual channel excitation system. In this paper a description of the improved control system with detailed design concept is given. Field tests were done to estimate the system performance as well as to obtain the model parameters. We can get tile Excitation model parameters by simulation based on the field test value and algorithm of parameter estimation identification. With model parameters, Excitation system stability was also verified in this paper.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

An Analytical Study on Torsional Excitation Force of an Engine and Propeller Shaft (엔진과 추진축의 비틀림 가진력에 관한 해석적 연구)

  • Kim, Byoung-Sam;Chang, Il-Do;Rhee, Bong-Goo;Mun, Sang-Don
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • Torque fluctuation of an engine and angular velocity variation of a propeller shaft are the main excitation sources in a vehicle driveline. This paper presents the mechanism of these excitation sources. An equivalent model of the engine system and propeller shaft system is constructed to simulate the excitation phenomena. The analytical model contains the geometrical and dynamic mechanism. Combustion pressure of the cylinder is measured from dynamometer. The computer simulation is carried out by commercial program package. Results of the simulations show the characteristics of the torsional excitation source of the driveline.

Simulation of Dynamic Characteristics of Agricultural Tractor(I) - Development of 3 Dimensional Dynamic Tractor-Trailer Model - (농용 트랙터의 동특성 시뮬레이션(I) - 3차원 동적 트랙터 -트레일러 모델 개발 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.421-432
    • /
    • 1997
  • This study was conducted to investigate dynamic characteristics of agricultural tractor with a particular interest in ride vibrations when it is subjected to various excitation forces. As the first part of it this paper describes development of dynamic model of a tractor-trailer system and its equations of motions. An 3 dimensional 16-degree-of-freedom dynamic model for a tractor-trailer system was developed and its equations of motions were derived, which will be used to investigate the effects of irregular ground surface and excitation forces due to the engine mounted on the tractor. And the excitation forces were also formulated analytically. The transition matrix method and QR algorithm were proposed for numerical solution of the equation of motions fur the developed model. The later parts of the study will include a proof of the model and optimization from which tractors can be designed to minimize the ride vibrations. This will be presented in the second and third papers to be followed shortly.

  • PDF

A neuron model that a moving object can be recognized in the planer region

  • Sekiya, Yasuhiro;Aoyama, Tomoo;Tamura, Hiroki;Tang, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.6-149
    • /
    • 2001
  • We propose a neuron model that has the interactions between excitation and inhibition. By adopting the knowledge of the physiology, the neuron model by imitating structure of a neuron, has the system resemble a neuron. We considered a neuron system based on the arguments, and wished to examine whether the system had reasonable function Koch, Poggio and Torre believed that inhibition signal would shunt excitation signal on the dendrites. They believed that excitation signal operated input signals and inhibition did as delayed ones. Thus, they were sure that function for directional selectivity was arisen by the shunting. We construct the neuron system with Koch's concept. Our neuron model has 3-layer structure and ...

  • PDF

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

A Study on the Parameter Identification for Generator Automatic Voltage Regurator by Field Test (현장시험에 의한 발전기 자동전압 제어장치의 정수 추정 기법에 관한 연구)

  • Lim, I.H.;Kim, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.277-280
    • /
    • 1995
  • A new improved excitation control system for power plant synchronous generators has been developed by KEPRI(Korea Electric Power Research Institute). In this paper a description of the developed control system with detailed design concept is given. Field tests are conducted to show the system performance and to obtain the model parameters. Based on the measurement approached by field tests excitation model parameters supposing a mathmatical model is given can be determinded. This paper also proposes a algorithm of parameter estimation and identification in the synchronous Generator Excitation Control System.

  • PDF