• Title/Summary/Keyword: Excimer lasers

Search Result 20, Processing Time 0.032 seconds

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

New Technology for Creation of LTPS with Excimer Laser Annealing

  • Herbst, Ludolf;Simon, Frank;Rebhan, Ulrich;Osmanow, Rustem;Fechner, Burkhard
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.319-321
    • /
    • 2004
  • We report on progress in developing high-power excimer lasers as well as UV-optics for creating low-temperature poly silicon (LTPS). A new high-power excimer laser offers 315 Watts with high pulse to pulse energy stability. Larger substrates can now be processed in better quality with either the SLS process or the new optics for line beam excimer laser annealing.

  • PDF

Medical Laser (의료용 Laser)

  • 김덕원
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 1990
  • Characteristics and applications of three major types of lasers are discussed. They are chemical-metabolic, thermal destructive, and nonthermal mechanical lasers. The thermal destructive lasers ($CO_2$, Argon, and Nd:YAG) are especially explained in detail with regard to energy density, wavelength, fluence, stage of thermal destruction, and advantages of laser surgery. Excimer and Q-swiched lasers are discussed as nonthermal mechanical ones. Delivery system, optical fiber and articulated arm, is also discussed. Finally, recent advancements of medical laser are included in the conclusion.

  • PDF

The Study on the Excitation Lasers for NO Planar Laser-Induced Fluorescence Imaging (NO PLIF용 excitation 레이저에 관한 연구)

  • Kang, Kyung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.13-21
    • /
    • 1997
  • Excitations of eight pumping transitions for nitric oxide fluorescence imaging are analyzed under equivalent experimental conditions to determine the detection. Frequency mixed dye laser pumping, 1st anti-Stokes $H_2$ Raman of KrF excimer laser pumping and ArF excimer laser pumping show good sensitivities.

  • PDF

Development of a Simulation Program for Virtual Laser Machining (가상 레이저가공 시뮬레이션 프로그램 구축)

  • Lee Ho Yong;Lim Joong Yeon;Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.54-61
    • /
    • 2005
  • A simulator for virtual laser machining is developed to help understanding and predicting the effects of machining parameters on the final machined results. Main program is based on the model for polymer ablation with short pulse excimer lasers. Version f of the simulator is built using Visual Fortran to make the user work under visual environment such as Windows on PC, where the important machining parameters can be input via dialog box and the calculated results for machined shape, beam fluence, and temperature distribution can be plotted through the 2-D graphics windows. Version II of the simulator is built using HTML, CGI and JAVA languages, allowing the user to control the input parameters and to see the results plot through the internet.

Micromachining of Fused Silica by KrF Excimer Laser Induced Wet Etching (KrF 엑시머 레이저를 이용한 용융실리카의 미세 습식 식각가공)

  • 백병선;이종길;전병희;김헌영
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.601-607
    • /
    • 2002
  • Optically transparent materials such as fused silica, quartz and crystal have become important in the filed of optics and optoelectronics. Laser ablation continues to grow as an important technique for micromachining and surface modification of various materials, because many problems caused by direct contact between tools and workpiece can be avoided. Especially, laser ablation with excimer lasers enables fine micromachining of transparent materials such as fused silica, quartz and crystal, etc. In this study, laser-induced wet etching of fused silica in organic solution was conducted. KrF excimer laser was used as a light source and acetone solution of pyrene was used as etchant. Changing the number of laser pulses, micro holes of various depths are fabricated.

The Characteristic of voltage and Current in Discharge-pumped Excimer Laser with Charge Transfer Type (용량이행형 방전여기 엑사이머 레이저의 전압 전류 특성)

  • Jung, Jae-Keun;Choi, Boo-Yeon;Lee, Choo-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.405-407
    • /
    • 1987
  • We calculated the discharge resistance, which is determined by plasma dynamics, of the discharge pumped excimer lasers with charge-transfer type. And investigated the characteristic of discharge voltage and current using EMIP.

  • PDF

Development of Computer Simulation Code of Excimer Lasers and Experimental Confirmation

  • Maeda, M.;Okada, T.;Muraoka, K.;Chino, K.U.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.58-63
    • /
    • 1999
  • In order to analyze the discharge-pumped KrF excimer laser, computer simulation code is developed. On the other hand, the electron velocity distribution in a discharge plasma, measured by the Thomson scattering method, showed the Maxwellian, while the code predicted non-Maxwellian. This disagreement was solved by introducing the electron-electron collision into the simulation code. We also developed a simulation code on the CO2 laser-heated plasma in high-pressure Ar gas, and estimated the formation process of Ar2 excimer. The code predicted the possibility of the Ar2 laser action at 126 nm.

  • PDF