• Title/Summary/Keyword: Excess cement

Search Result 46, Processing Time 0.029 seconds

A modified technique for extraoral cementation of implant retained restorations for preventing excess cement around the margins

  • Yuzbasioglu, Emir
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.146-149
    • /
    • 2014
  • The major drawback of cement-retained restorations is the extrusion of the excess cement into the peri-implant sulcus, with subsequent complications. Insufficient removal of the excess cement may initiate a local inflammatory process, which may lead to implant failure. This article presents a method of controlling cement flow on implant abutments, minimizing the excess cement around implant-retained restorations.

Burning processes on cement manufacture (시멘트의 소성)

  • Lim Eung Keuk
    • Cement Symposium
    • /
    • no.1
    • /
    • pp.18-22
    • /
    • 1973
  • A historical review of burning processes on cement manufacture has been made regarding specially to heat efficiency. In addition to these processes, two examples of stoichiometric calculation dealing with combustion such as air fuel ratio and excess air h

  • PDF

A technique for fabricating abutment replica with hot melt adhesive material to minimize residual cement in implant restoration: a case report (임플란트 보철 합착 시 잔여 시멘트 최소화를 위해 열가소성 접착제를 이용한 복제 지대주 제작 방법: 증례보고)

  • Seo, Chi-Won;Han, A-Reum;Seo, Jae-Min;Lee, Jung-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.240-245
    • /
    • 2016
  • Removal of excess cement is important to prevent biological complication in cementation of implant restoration with subgingival margin. It can be difficult to completely remove excess cement. Several techniques have been introduced to minimize excess cement using abutment replica. In this case report, a simple method for making abutment replica with hot melt adhesive material in dental office was described. This technique is simple and effective because it can be used for pre-fabricated or custom abutment without additional laboratory procedure. In addition, it can minimize excess cement after cementation of implant restoration.

A literature review on cementation of implant prosthesis (임플란트 보철물의 합착에 대한 문헌고찰)

  • Lee, Eun-Suk;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.458-467
    • /
    • 2016
  • Cement-retained implant prosthesis has several advantages in the esthetic and occlusal aspects. However, the difficulty of the retrievability and the possibility of peri-implantitis induced by the cement excess would be a threatening factor to the implant prognosis. Peri-implantitis resulting from the remaining cement could occur later on to the patients with periodontitis history. Retention can be controlled by selecting the right cement type. Retention of the cement was the strongest in the resin cement, followed by resin modified glass ionomer cement, poIycarboxylate cement, zinc phosphate cement and glass ionomer cement. Retention of the provisional cement weakened after thermocycling. Other factors such as the abutment number, abutment alignment, height and taper of the abutment can also affect the total retention. To the success of the cement-retained prosthesis, it's important to select the right cement for the clinical purpose. The prosthesis should be fabricated in accordance with the biomechanical requirements. The prosthesis should be cemented with the techniques to reduce the excess cement as much as possible. In addition, the excess cement should be identified using the radiography and carefully removed.

Comparison on the Releasing Characteristics of Asbestos Fiber from Plant Slate Roof and House Slate Roof (공장과 주택 슬레이트지붕의 석면 노출특성 비교)

  • Jeong, Jae-won;Yoo, Eun-chul;Lee, Sang-Jonn;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.927-937
    • /
    • 2015
  • This study was performed to identify and quantify the asbestos fibers released from two types of asbestos-cement slate roofs. One is a plant roof installed in 1987 which contained 15% chrysotile, and the other is a residential roof installed before 1983 which contained 12% chrysotile. The concentrations of asbestos fibers in air surrounding asbestos-cement slate roofs and in the falling water harvested from the same roofs on rainy days ranged from 0.0012 to 0.0018 f/mL and from 1,764 f/L to 10,584 f/L, respectively. The concentration of inorganic fibers in the soil around asbestos-cement slate roofs was from 217 to 348 f/g. With the above results, the excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate based on US EPA IRIS (Integrated risk information system) model is within 5.5E-06 ~ 6.5E-06 levels which indicates that the levels do not exceed "the acceptable risk(1.0E-05)" recommended by WHO. The asbestos concentration in air, drained rainfall and soil around the plant slate roof was higher than that around residential slate roof, but the excess lifetime cancer risk (ELCR) from residential slate was higher than that from plant slate. This suggested that the enclose and encapsulation of residential roofs have priority in removal policy to minimize the exposure risk.

Effects of the Finite Ground Impedance on the Excess Attenuation of Noise (지표면 임피던스에 의한 소음의 초과감쇠에 관한 연구)

  • Kim, Dong-Il;Kang, Byoung-Yong;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.5-14
    • /
    • 1994
  • In this study, the ground impedance is measured using the standing wave method in a free field on the grass, the soil, and the ground covered with asphalt and cement. And the excess attenuation of sound is investigated. Results are obtained in the frequency range between 300Hz and 1000Hz. There are very good agreements between the results of the measured ground impedance and the prediction of Delanyand Bazley. The ground impedance is increased in order the grass, the soil, the asphalt and the cement road, decreased with frequency for each the ground. The excess attenuation of sound is mainly determined by the ground impedance. The experimental results of the excess attenuation over the different types and the microphone heights are compared with the theoretical values.

  • PDF

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

The Effect of ZnO on the Hydration Reaction and Physical Properties of Cement (Cement의 수화반응 물리특성에 미치는 ZnO의 영향)

  • 김홍기;추용식;이경희;송명신
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.399-405
    • /
    • 1997
  • With the increase of ZnO content, heat of hydration decreased. For specimens containing ZnO more than 0.6 wt.%, the compressive stength of cement cured for 28 days could not be measured because setting was not occurred. With the increase of ZnO content, Blaine specific surface area of cement was decreased and the residue of 45 ${\mu}{\textrm}{m}$ and 90 ${\mu}{\textrm}{m}$ was increased when cement was ground. That is, grindability became worse as ZnO increased in clinker. The difference of color as a function of ZnO content could not be observed, but in the excess of amount of ZnO added, color became more white and reddish yellow.

  • PDF

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

A Study on Bacterial Leaching of Low-Grade Copper Mineral(V) (저품위 동광석의 세균침출에 관한 연구 5)

  • 민봉희;박원구;이강순
    • Korean Journal of Microbiology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 1974
  • It was convinced that with a relatively small capital investment and with a low operating cost, appreciable amounts of cement copper could be produced from low-grade minerals by the application of a bacterial leaching method. For the recovery of cement copper from the impure pregnant solution, direct precipitation of copper with tin plates by a bacterial leaching method was feasible. The results obtained were as follows: 1)In order to remove the cement copper from the reducing metal, aeration and agitation method were more effective and economic than shaking method. 2)The rate of copper recovery from the pregnant solution was accerelated according to increasing quantities of reducing metal. However, the excess of reducing metal reduced the grade of cement copper. 3)Among the comparative experiments of copper recovery at each reaction temperature of $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, the recovery rate of copper at $30^{\circ}C$from the pregnant solution was highest. 4)Direct cementation method on iron-containing metal was an excellent method for the recovery of cement copper in bacterial leaching.

  • PDF