• 제목/요약/키워드: Excavator Control

검색결과 192건 처리시간 0.025초

굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구 (Geometric Modeling and Trajectory Control Design for an Excavator Mechanism)

  • 김성호;유승진;이교일
    • 유공압시스템학회논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

독립제어 밸브에 의한 굴삭기 버켓 액추에이터 압력제어 (Bucket Actuator Pressure Control by Independent Metering Valve for Excavator)

  • 양주호;정태랑
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.36-42
    • /
    • 2016
  • A cylinder control system of the conventional construction machine has been controlled by hydraulic spool valves. This system is low-cost but system efficiency is not high. Recently, to improve this, all valves are controlled electronically and independently. Bu and Yao suggested four way electronic hydraulic control valve system. It is called IMVT(Independent Metering Valve Technology). The purpose of the study is to find proper IMV pressure control method for excavator and to validate excavator's bucket regeneration energy effect by controlling the IMV system. In this paper, we mathematically describe the bucket system of excavator first. And then, based on these results, we design the control system which is divided into two operations(none regeneration or regeneration).The results of the experiment show the desirable performance and usefulness of the designed control system.

외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어 (Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer)

  • 조승호;안건형
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF

자동화 굴삭기 최적경로 생성 알고리즘 개발 (Development of Optimal Path Planning for Automated Excavator)

  • 신진옥;박형주;이상학;홍대희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

Development of AMESim Model of Main Control Valve for Hydraulic Excavator

  • Lim, Tae-Hyeong;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.419-422
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. The objective of this paper is to design each components and to construct boom, arm, bucket circuit. These models modeled with AMESim show us change of variables and behavior of excavator. Simulation model will be used for simulator of excavator.

  • PDF

지능형 굴삭 시스템의 버킷 끝단 위치제어에 관한 연구 (A Study on the Bucket Tip's Position Control for the Intelligent Excavation System)

  • 김기용;장달식;안현식
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.32-37
    • /
    • 2008
  • For the bucket tip position control of the excavator, a traditional hydraulic excavator system was exchanged into an electro-hydraulic one. EPPR valves are attached to the traditional MCV and hydraulic joysticks are replaced by electronic ones to develop the electro-hydraulic system. To control the electronic pump with a good performance, the control logic for the pump is deduced from the AMESim simulation and the experimental method on the test bench. To get a good position control performance of the excavator bucket tip, PI+AntiWindup controller is selected as a position controller. The experimental results showed the good controllability for the electro-hydraulic excavator system on the test bench.

  • PDF

소형 굴삭기용 브리드 오프 센터형 유압 제어 시스템의 특성 (The Characteristic of the Hydraulic Control System with Bleed-off Center Type of a Compact Excavator)

  • 김준식;이승현;이재원
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.119-126
    • /
    • 2008
  • In this study, the characteristics of the hydraulic control system with bleed-off center type of a compact excavator were analyzed using developed analysis program. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the performance improvement of a hydraulic control system of a compact excavator.

Computation of Tipping over Stability Criterion using ZMP algorithm for Hydraulic Excavator having Crane Function

  • Lim, Tae-Hyeong;Kim, Yong-Seok;Cheon, Se-Young;Lee, Young-Ju;Choi, Jong-Hwan;Lee, Hong-Seon;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.286-290
    • /
    • 2004
  • This paper deals with tipping over of hydraulic excavator's crane work. If the excavator lifts too heavy weight, the excavator will be tipped up. This is account for 38% of whole excavator accidents. In this paper, tipping-over load which is maximum load of excavator can lift with displacement of excavator links, real load and tipping-over rate are computed with Zero Moment Point theory. ZMP is verified with simulation and experiment.

  • PDF

부하감지시스템을 사용한 굴삭기의 유압제어특성 시뮬레이션 (A Simulation on the Hydraulic Control Characteristics of Excavator Using Load Sensing System)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.134-145
    • /
    • 1998
  • The purpose of this paper is to construct a computer simulation system which can analyze and design the hydraulic excavator Theoretical analyses are performed on the hydraulic circuit and attachment of excavator with load sensing system. Databases are constructed for control valve opening areas, horsepower control and for load sensing regulator. For hydraulic components modularized programming techniques are applied which is expected to be utilized for software development of fluid power system. Through simulation an information of any point in hydraulic circuit can be obtained.

  • PDF

$H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어 (Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework)

  • 최종환;김승수;양순용;이진걸
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.