• Title/Summary/Keyword: Excavator Control

Search Result 193, Processing Time 0.023 seconds

Static Analysis of Dedicated Proportional Flow Control Valve for IMV (굴삭기 IMV용 비례 유량제어밸브 정특성 해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia (회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Jaho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.

Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators (굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발)

  • Oh, Kwang Seok;Park, Sung Youl;Seo, Ja Ho;Lee, Geun Ho;Yi, Kyong Su
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator (21톤급 전기 굴삭기용 파일럿 작동식 유량제어 밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Nam, Y.Y.;Seo, J.H.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.52-59
    • /
    • 2015
  • An electro hydraulic poppet valve (EHPV) and a variable orifice poppet are assembled in a single block, which is referred to as a RHINO but is also generally called a pilot-operated flow control valve. In this study, we analyzed the structure and the operating principle for a RHINO applied in a 21-ton electric excavator system. The RHINO was experimentally tested to measure the dynamic responses and the pressure energy loss. In this test, we investigated the variation in the conductance coefficient according to the increase in the supply pressure under a constant current and a variation in the flow rate according to the increase in the current. Then, the geometrical shapes and the spring stiffness of the RHINO were considered to develop an analysis model. The characteristics (current-force and hysteresis) for the solenoid based on the experimental data were reflected in the analysis model that was developed, and the reliability of the analysis model was also verified by comparing the experimental and analytical results. The developed model is thus considered to be reliable for use in a wide range of applications, including optimum design, sensitivity analysis, parameter tuning, etc.

Development of Power Management Strategies for a Compound Hybrid Excavator (복합형 하이브리드 굴삭기를 위한 동력전달계 제어기법 연구)

  • Kim, Hak-Gu;Choi, Jae-Woong;Yoo, Seung-Jin;Yi, Kyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1537-1542
    • /
    • 2011
  • This paper presents the power management strategies for a compound hybrid excavator. The compound hybrid excavator has been replaced the hydraulic swing motor to the electric swing motor. This excavator requires a proper control algorithm to regulate the energy flow between the mechanical coupling and the electric devices. The controller should improve fuel economy and maintain the super capacitor voltage within a proper range. A thermostat controller and ECMS controller are designed such that these objectives can be achieved. The thermostat controller regulates the power of the engine-assist motor on the basis of the super capacitor voltage, and the ECMS controller determines it using the real-time fuel minimization strategy based on the concept of equivalent fuel. Simulation results showed that by using the hybrid excavator, the fuel economy becomes about 20% higher than that obtained using the conventional excavator and that the ECMS controller outperforms the thermostat controller.