• Title/Summary/Keyword: Excavation face

Search Result 254, Processing Time 0.02 seconds

Field Demonstration of Pre-Fracturing for Controlling Noise and Vibration (선행이완발파의 진동 및 소음 제어 효과 검증을 위한 발파 시험 시공)

  • Juhyi Yim;Bong Cheol Lee;Jae Hoon Jung;Han Byul Kang;Jae Won Lee;Young Jin Shin
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.49-57
    • /
    • 2024
  • Pre-fracturing is the blasting method to weaken the rock mass prior to the main excavation. This study aims to evaluate the effectiveness of pre-fracturing by using half the explosive charge typically employed in conventional blasting designs. Field tests conducted at a quarry in Gapyeong showed that noise levels were reduced by 2.7 dB due to the decreased amount of explosive per blast hole, and vibration levels were controlled to the precision vibration control blasting standard. Rock weakening was confirmed through induced cracks observed on the surface and core samples, and it was noted that the weakening effect of the blasting decreased as the burden increased. The vibrations from conventional blasting were found to be lower than those from pre-fracturing. This was attributed more to the geological conditions, such as joints, rather than the blasting design factors like explosive amount, burden, and the number of free face.

The Study on Restoration & Repair of the Seated Stone Statue of Buddha in the Samreoung Valley of Mt. Namsan (경주 남산 삼릉계 석불좌상 보존 및 복원 연구)

  • Jeong, Min Ho;Ji, Sung Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.242-281
    • /
    • 2010
  • There are a large number of Buddhist cultural relics in Mt. Namsan. The cultural relics carry the spirit of people of Shila who dream of Buddhist Elysium and the establishment of Buddhist nation. In the valley and the top of the mountain and on various rock cliff, stone statues of Buddha and stone pagodas stand in harmony with nature. For that reason, Mt. Namsan is called an open-air museum. And it played an important role in establishing 'The UNESCO World Heritage' status for Gyeongdju in December 2000. But sadly, there are many stone relics that have eroded away and damaged from collapsing in the passage of time. The seated stone statue of Buddha in Samreoung valley of Mt. Namsan is one of them. It was created between the 8th and 9th century, and restored without much care nor extensive historical research in 1923. As a result, The face of the Buddha remained with concrete mortar and its nimbus fallen backward and destroyed. Therefore, restoration and repair as well as creation of a statue environment for the statue were urgent. So we immediately started in restoration and repair. First, through the archaeological excavation around the stone Buddha, we carried the stone Buddha on the original position. In order to restore the statues to its original glory created by the Unified Shila Dynasty, we created a restoration plan in corporation with art historians and historians, then restored the jaw and the damage nimbus. Second, we made the weathering & damage map of the stone Buddha. In order to prevent second damage, we cleaned the surface of contaminants with distilled water. Third, we studied restoration method to prevent artificial damage. We recreated parts of his face and halo. Then each parts of the statue were restored to their original position. In the whole process of restoration, we tried to use traditional techniques.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

Changes in Construction and Characteristics during the Period of Foundation and Change of the Garden Pond Site in Guhwang-dong, Gyeongju (경주 구황동 원지(九黃洞 園池) 유적 창건 및 변화 시기의 조영과 성격 변화)

  • KIM, Hyungsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.102-118
    • /
    • 2022
  • Gyeongju, the capital of Silla, is the very essence of the culture and technology of the thousand-year-reign of Silla. However, few studies have been conducted on the landscape sites of the capital of Silla other than Donggung Palace and Wolji Pond, due to the lack of related data. Therefore, this study examined the construction characteristics and nature of the garden pond in Guhwang-dong, whose complete appearance was identified through excavation following Donggung Palace and Wolji Pond. Since the excavation of the garden pond in Guhwang-dong, Gyeongju, there have been disagreements in academia as to whether it is a palace pond or a temple pond of Bunhwangsa Temple. Considering the unique characteristic of the garden pond that it is divided into two periods, it was interpreted that it would have functioned as a ritual facility related to Ryong (oriental dragon) belief in the 6th to 7th centuries, the first period, and as a garden pond with enhanced landscaping functions in the 8th to 9th centuries, the second period. In addition, it is highly probable that it was the site of Cheongyeongung Palace (青淵宮) and Jochujeong Pavilion (造秋亭) mentioned in the literature records. The "ㄹ"- shaped waterway, a characteristic facility of the first period, was found; however, considering its width and depth, it is insufficient to conclude that it was a simple drainage facility. Rather, it is more likely that it functioned as a passageway for the conceptual entry of Ryong during Ryong rituals. Furthermore, some have suggested that it may have been a ceremony-related Yusang-goksu (流觴曲水) facility. These facilities related to Ryong rituals were reorganized in the second period. Specifically, the nature of the garden pond was changed centered on the landscaping function in connection with the addition of a curved revetment, garden stone, and pavilion buildings, and the dismantlement of the "ㄹ"-shaped waterway and hexagonal building. As for nature, it can be regarded as a royal facility in terms of decorative elements including the ritual function of the first period and the gwimyeonwa (ghost face tiles) of the second period. Judging from the fact that the upper part of the embankment adjacent to the west side of the site was removed, it is very apparent that the main building was located on the upper part of the embankment. There would not have been a large-scale building site because it served the functions of ritual and recreation, rather than being the residence of the king.

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

2 Dimensional TSP Modeling Using Finite Element Method (유한 요소법을 이용한 2차원 TSP 모델링)

  • Lee, Hong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • TSP (Tunnel Seismic Profiling) survey is a technique for imaging and characterizing geological structures ahead of a tunnel face. The seismic modeling algorithm and the synthetic data could be helpful for TSP surveys. However, there is few algorithm to describe the propagation of the elastic waves around the tunnel. In this study, existing 2-dimensional seismic modeling algorithm using finite element method was modified to make a suitable algorithm for TSP modeling. Using this algorithm, TSP modeling was practiced in some models. And the synthetic data was analyzed to examine the propagation characteristics of the elastic waves. First of all, the modeling for the homogeneous tunnel model was practiced to examine the propagation characteristics of the direct waves in the vicinity of the tunnel. And the algorithm was applied to some models having reflector which is perpendicular or parallel to the excavation direction. From these, the propagation characteristics of the reflected waves were examined. Furthermore, two source-receiver arrays were used in respective models to investigate the properties of the two arrays. These modeling algorithm and synthetic data could be helpful in interpreting TSP survey data, developing inversion algorithm and designing new source-receiver arrays.

Application of x-MR control chart on monitoring displacement for prediction of abnormal ground behaviour in tunnelling (터널 시공 중 이상 거동 예측을 위한 계측 변위의 x-MR 관리도 활용)

  • Yun, Hyun-Seok;Song, Gyu-Jin;Shin, Young-Wan;Kim, Chang-Yong;Choo, Seok-Yeon;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2014
  • The displacement data monitored during tunnel construction play a crucial role in predicting the behaviour of ground around and ahead of excavation face. However, the management criteria for monitoring data are not well established especially for the reliable analysis on varying aspect of displacement data along with chainage. In this study, we evaluated the applicability of x-MR control chart method, which is kind of applied statistical management method, for the analysis of displacement monitoring data in terms of prediction of possible collapse or induced cracks. As a result, a possible abnormal behaviour could be predicted beforehand at 5 ~ 13 m ahead or on at least one day before it occurred by using x-MR control chart method. In addition, it is noted that the moving range for the x-MR control chart should be set to 5~10 for this purpose.

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF