• 제목/요약/키워드: Exact analytical method

검색결과 195건 처리시간 0.023초

무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 자유진동해석 (Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges using Non-dimensional Dynamic Influence Functions)

  • 강상욱;김일순;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.740-745
    • /
    • 2003
  • The so-called boundary node method (or NDIF method) that was developed by the authors has been extended for free vibration analysis of arbitrarily shaped plates with free edges. Since the proposed method is based on the collocation method, no integration procedure is needed on boundary edges of the plates and only a small amount of numerical calculation is required. A special coordinate transformation has been devised to consider the complicated free boundary conditions at boundary nodes. By the use of the special coordinate transformation, the radius of curvature involved in the free boundary conditions can be successfully dealt with. Finally, verification examples show that natural frequencies obtained by the present method agree well with those given by exact method and other analytical methods.

  • PDF

혼합 경계를 가진 임의 형상 음향 공동의 고정밀도 고유치 추출 기법 (Extraction of eigenvalues of acoustic cavities with a mixed boundary)

  • 강상욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.404-406
    • /
    • 2014
  • The NDIF method is developed for eigenvalue analysis of arbitrarily shaped two-dimensional acoustic cavity with a mixed boundary, which consists of rigid-wall and open boundaries. The NDIF method, which was developed by the author in 2000, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). The validity of the proposed method is shown in a case study, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method or FEM(ANSYS).

  • PDF

상전압 및 선간전압에 대한 불평형율 (Voltage Unbalance Factor for Phase and Line Voltage)

  • 김종겸;박영진;이동주;이종한;이은웅
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

선간전압과 상전압에 대한 전압불평형율의 비교 (Comparison of Voltage Unbalance Factor for Line and Phase Voltage)

  • 김종겸;박영진;이은웅
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

초기조건을 갖는 이산계의 과도응답에 대한 스펙트럴해석법 (Spectral Analysis Method for the Discrete Systems with Initial Conditions)

  • 김성환;조주용;이우식
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.578-583
    • /
    • 2005
  • This paper introduces a fast Fourier transform (FFT)-based spectral dynamic analysis method for the transient responses as well as the steady-state responses of the linear discrete systems subject to non-zero initial conditions. The forced vibration of a viscously damped three-DOF system is considered as the illustrative numerical example. The proposed spectral analysis method is evaluated by comparing its results with the exact analytical solutions and the numerical solutions obtained by the Runge-Kutta method.

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.

A unified method for stresses in FGM sphere with exponentially-varying properties

  • Celebi, Kerimcan;Yarimpabuc, Durmus;Keles, Ibrahim
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.823-835
    • /
    • 2016
  • Using the Complementary Functions Method (CFM), a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material (FGM) is presented. The mechanical properties are assumed to obey the exponential variations in the radial direction, and the Poisson's ratio is assumed to be constant, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. In the present paper, a semi-analytical iterative technique, one of the most efficient unified method, is employed to solve the heat conduction equation and the Navier equation. For different values of inhomogeneity constant, distributions of radial displacement, radial stress, circumferential stress, and effective stress, as a function of radial direction, are obtained. Various material models from the literature are used and corresponding temperature distributions and stress distributions are computed. Verification of the proposed method is done using benchmark solutions available in the literature for some special cases and virtually exact results are obtained.

Experimental and analytical studies on one-way concrete slabs reinforced with GFRP molded gratings

  • Mehrdad, Shokrieh Mahmood;Mohammad, Heidari-Rarani
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.569-584
    • /
    • 2009
  • Corrosion of steel rebars in bridge decks which are faced to harsh conditions, is a common problem in construction industries due to the porosity of concrete. In this research, the behavior of one-way concrete slabs reinforced with Glass fiber reinforced polymer (GFRP) molded grating is investigated both theoretically and experimentally. In the analytical method, a closed-form solution for load-deflection behavior of a slab under four-point bending condition is developed by considering a concrete slab as an orthotropic plate and defining stiffness coefficients in principal directions. The available formulation for concrete reinforced with steel is expanded for concrete reinforced with GFRP molded grating to predict ultimate failure load. In finite element modeling, an exact nonlinear behavior of concrete along with a 3-D failure criterion for cracking and crushing are considered in order to estimate the ultimate failure load and the initial cracking load. Eight concrete slabs reinforced with steel and GFRP grating in various thicknesses are also tested to verify the results. The obtained results from the models and experiments are relatively satisfactory.