• Title/Summary/Keyword: Ex vivo

Search Result 412, Processing Time 0.024 seconds

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

  • Lee, Jun Hee;Lee, Sang Hun;Lee, Hyang Seon;Ji, Seung Taek;Jung, Seok Yun;Kim, Jae Ho;Bae, Sun Sik;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.459-466
    • /
    • 2016
  • Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than $Lnk^{-/-}$ MSCs. An ex vivo adipogenic differentiation assay showed that $Lnk^{-/-}$ MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R-Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) and its adipogenic target genes (LPL and FABP4) significantly decreased in $Lnk^{-/-}$ MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the $IGF-1/Akt/PPAR-{\gamma}$ pathway.

Antimelanogenic Effect and Whitening of Anthocyanin Rich Fraction from Seeds of Liriope platyphylla (맥문동 종실 안토시아닌 분획물의 멜라닌 생성 억제 및 미백 효과)

  • Choung, Myoung Gun;Hwang, Young Sun;Kim, Gi Ppeum;Ahn, Kyung Geun;Shim, Hoon Seob;Hong, Seung Beom;Choi, Jae Hoo;Yu, Chang Yeon;Chung, Ill Min;Kim, Seung Hyun;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.361-371
    • /
    • 2013
  • This study was performed to determine the antimelanogenic effect and tyrosinase inhibitory activities of anthocyanin rich fraction (AN-SLP) from Liriope platyphylla Wang et Tang seeds. Anthocyanins isolated from L. platyphylla seeds revealed the presence of four major anthocyanin components, which were tentatively identified as delphinidin-3-Oglucoside, delphinidin-3-O-rutinoside, petunidin-3-O-rutinoside, and malvidin-3-O-rutinoside using semipreparative HPLC, $^1H$-NMR, $^{13}C$ NMR, FAB-MS and LC/ES-MS. The inhibitory effect of AN-SLP on tyrosinase activity was studied using in vitro (against mushroom tyrosinase) and ex vivo (against B16 melanoma cell tyrosinase) models. Cellular tyrosinase activity was decreased by AN-SLP treatment in B 16 melanoma cells through dose dependent manner, but AN-SLP did not inhibit mushroom tyrosinase and L-DOPA oxidation directly. AN-SLP showed melanin inhibition by 53.2% at 50 ${\mu}g/m{\ell}$ which was 0.7 times more efficient than the antimelanogenic effect of commercial arbutin and kojic acid (36.5%) also did not show cell toxicity. Additionally, AN-SLP inhibited the activity of ${\alpha}$-glucosidase and the glycosylation of tyrosinase in melanoma cell. The resulting unsaturated glycosylation of tyrosinase makes it unstable and disturb correct transportation. From theses results, we conclude that AN-SLP could be used as anti-melanogenic agent for skin whitening.

Composition Comprising the Extract of Anethi Fructus for the Treatment and Protection of Immune Activity (시라자 추출물을 함유하는 면역질환의 치료 및 예방을 위한 면역증강용 조성물)

  • Park, Gil-Soon;Chang, In-Ae;Kim, Youn-Chul;Lee, Moo-Hyung;Shin, Hye-Young;Choi, Du-Young;Yun, Yong-Gab;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.700-704
    • /
    • 2007
  • In the recent, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Here we investigated the role of the extract of Anethi Fructus in the expression of inflammatory mediators, surface molecule, and related receptors in vitro. In murine macrophage RAW 264.7 cells and peritoneal macrophages of C57BL/6N mice, water extract of Anethi Fructus increased the production of secretary tumor necrosis factor (TNF)-a and Nitric oxide (NO), and the expression level of CD14, LPS co-receptor and CD86, co-stimulatory molecule compared to negative natural extract ex vivo. The water extract of Anethi Fructus increased the production of interferon (IFN)-g from splenocytes. Also, water extract of Anethi Fructus increased ConA-induced cell proliferation. These results suggest that water extract of Anethi Fructus may enhance the immune response through immune modulation of macrophage and lymphocytes.

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Evaluation of the Femoral Stem Implant in Canine Total Hip Arthroplasty: A Cadaver Study

  • Cho, Hyoung Sun;Kwon, Yonghwan;Kim, Young-Ung;Kang, Jin-Su;Lee, Kichang;Kim, Namsoo;Kim, Min Su
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • Total hip arthroplasty (THA) is a successful surgical treatment for both patients with chronical lameness and dogs who are nonresponsive to medical treatments, providing excellent joint function for returning dogs to the normal gait in 80% to 98% of hip dysplasia (HD) patients. The THA surgical implant system manufactured by BioMedtrix and Kyon are today widely accepted. When comparing the BioMedtrix biological fixation (BFX) system to the BioMedtrix cemented fixation (CFX) system, the many advantages of BFX, which include longer potential implant life, decreased risk of postoperative or later infection, and better implant stability, become evident. However, BFX implies a greater risk of femoral fracture during reaming and requires a more precise surgical technique to achieve good implant fit, given the press-fit nature of cementless THA. The purposes of this study are to both describe the mistakes and complications during stem implantation for beginner surgeons with both the BFX and the CFX systems and to document the initial result of 12 implantations in canine cadavers. Given the detailed evaluations of 3 specialists, who are Diplomate American College of Veterinary Surgeons (DACVS), only 3 of 11 stems were appropriately sized. Specifically, 6 stems were anteverted rather than being retroverted; further, although 7 stems were coaxial with the femoral long axis in the frontal plane, the other stems were in the varus at the frontal plane, with the proximal medial stem adjacent to the medial femoral cortex. Moderate angulation from the cranial to the caudal directions was found in 4 cases in the sagittal plane. Additionally, 1 case of femoral fissure and 1 case of perforated femoral cortex were reported. It is not easy for surgeons performing cementless THA for the first time to achieve a good result, even though they completed an educational course about it and given that catastrophic complications often occurred during early surgical clinical cases. Therefore, ex-vivo studies are sincerely required to get an expertise by rehearsing the preparation of the femoral envelop in isolated bones. Further studies should be conducted to achieve both highly accurate implant size and correct orientation during the preoperative planning. Additionally, surgeons' learning curve should be examined in future investigations.

Immunomodulatory and anti-metastatic activities of a crude polysaccharide isolated from Korean apple vinegar (한국산 사과식초에서 분리한 다당의 면역 및 항전이 활성)

  • Kim, Han Wool;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • To characterize new physiologically active components in Korean apple vinegar, a crude polysaccharide (KAV-0) was prepared by precipitation with 80% (v/v) ethanol. KAV-0 mainly comprises 38.2% mannose, 19.1% galactose and 14.3% glucose. In an in vitro cytotoxicity analysis, KAV-0 promoted the proliferation of peritoneal macrophages and RAW 264.7 cells in a dose-dependent manner, and showed no cytotoxicity in B16-BL6 melanoma cells. Murine peritoneal macrophages and RAW 264.7 cells stimulated by KAV-0 produced various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide (NO). Intravenous (i.v.) administration of KAV-0 significantly augmented NK cell cytotoxicity against Yac-1 tumor cells. In experimental lung metastasis caused by B16-BL6 melanomas, prophylactic i.v. administration of KAV-0 at a dosage of $1,000{\mu}g/mouse$ inhibited lung metastasis by 53.0%. These results suggest that the crude polysaccharide (KAV-0) isolated from Korean apple vinegar has a considerably high anti-metastatic activity and immunomodulatory activities beneficial to human health.

Immunomodulatory and anti-metastatic activities of polysaccharide isolated from red cabbage (적양배추에서 분리한 다당의 면역 및 항전이 활성)

  • Lee, Sue Jung;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.263-271
    • /
    • 2019
  • In this study, we examined the immunostimulating characteristics of a hot water extract (RCW) and crude polysaccharides (RCP) of red cabbage. RCW and RCP did not show any cytotoxicity in B16BL6 cells and macrophages. Although the sugar compositions of RCW and RCP were similar, the uronic acid content of RCP was higher than that of RCW RCP significantly increased the production of various cytokines and NO, whereas RCW did not affect the production of cytokines and NO. In an ex vivo assay of natural killer (NK) cell activity, intravenous (i.v.) administration of RCP significantly augmented NK cytotoxicity against Yac-1 tumor cells at 3 days after RCP treatment. In an experimental lung metastasis model using B16BL6 melanoma cells, i.v. administration of RCP at a dose of $1,000{\mu}g$ per mouse significantly inhibited 47.3% of lung metastasis. These results suggest that crude polysaccharide isolated from red cabbage is a promising food ingredient for the prevention of tumor metastasis.