• 제목/요약/키워드: Evolution of wave profile

검색결과 12건 처리시간 0.019초

서펜트형 조파기에 의해 생성된 다방향 쇄파의 파형 전개 (Evolution of Wave Profiles in Directional Breaking Generated by Serpent-type Wavemaker)

  • 홍기용;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.264-269
    • /
    • 2002
  • The wave profiles of directional breaking waves are investigated experimentally in a directional wave basin. The directional breaking waves are generated by component wave focusing both in direction and frequency based on constant wave steepness and constant wave amplitude spectrum models. the profile parameters of wave crest steepness and asymmetry are adapted to analyze the evolution of breaking ware characteristics in a view of focusing efficiency. The generated breaking waves are classified into the incipient, single and multi breaking waves.

  • PDF

DEVELOPMENT OF A NEW MODEL FOR NONLINEAR-DISPERSIVE WAVES OVER ARBITRARY DEPTHS

  • Nadaoka, Kazuo
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1998년도 정기학술강연회 발표논문 초록집 Annual Meeting of Korean Society of Coastal and Ocean Engineers
    • /
    • pp.5-11
    • /
    • 1998
  • Wave nonlinearity and dispersivity have mutually counteracting effects on the wave evolution process; i.e., the former makes the wave profile steeper, while the latter milder. Therefore to describe evolution of nonlinear water waves under general condition such as nonlinear random waves over arbitrary depths, both the wave nonlinearity and dispersivity must be properly taken into account in the wave modeling. (omitted)

  • PDF

다방향 파랑집중에 의한 쇄파의 파형특성 연구 (Evolution of Surface Profiles of Breaking Waves Generated by Directional Wave Focusing)

  • 홍기용;최학선
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2002
  • 방향 및 주파수 성분을 포함하는 파랑집중에 의해 다방향 쇄파를 생성하였으며, 등기울기 및 등진폭 스펙트럼 모델을 적용하였다. 생성된 다방향 쇄파는 초기쇄파, 단일쇄파 다중쇄파로 구분된다. 다방향 쇄파의 특성을 파정 기울기 및 비대칭성으로 정의되는 파형인자들의 함수로 고찰하였다. 또한 파랑집중의 효율성 관점에서 쇄파 파랑특성의 전개를 분석하였다. 파정 전면 기울기 및 연직 비대칭성은 쇄파과정에 영향을 미치는 중요한 인자이나, 파정후면 기울기 및 수평 비대칭성은 쇄파 과정에서 거의 상수 값을 갖는다. 방향 성분의 중첩은 파랑집중의 효율성을 크게 강화하며, 이는 다방향파의 쇄파 특성이 일방향파의 쇄파 특성과 상이함을 나타낸다.

  • PDF

규칙파 조건에서의 사질해안 폭풍파와 평상파 단면변화 실험연구 (An Experimental Study of Sand Beach Profile Evolution under Regular Waves Corresponding to Storm and Normal Conditions)

  • 최준우;노민
    • 대한토목학회논문집
    • /
    • 제37권2호
    • /
    • pp.333-342
    • /
    • 2017
  • 사질해안의 폭풍 및 평상파 단면사이의 지형변화 특성을 이해하기 위해 2차원 이동상 수리실험을 수행하였다. 폭풍 및 평상파 단면을 발달시키는 입사파 파라미터를 조건으로, 연속적으로 단면 지형변화와 수면변위를 계측하였다. 두 입사파 조건을 번갈아 각각의 평형 상태에 도달하기까지의 변화를 쇄파대에서 관측하였다. 폭풍파 조건에서 붕괴(plunging) 쇄파로 사주가 발달하고 포말대의 경사가 급해짐을 보였으며, 평상파 조건에서는 말림(spilling) 쇄파에 의해 사주가 소멸함을 보였다. 단면 지형변화 관측을 통하여 폭풍파 조건에서 표사가 외해로 유출되고, 평상파조건에서 내해로 표사가 유입됨을 알 수 있었다. 폭풍파 조건에서 외해방향으로의 표사이송에 지배적인 역할을 하는 강한 역저류(undertow)가 발달하였고, 평상파 조건에서는 약한 역저류가 발달하였다. 그리고 두 조건에서 모두 해안방향으로의 표사이송에 지배적 역할을 하는 비선형 파동에 의한 왜도(skewness)와 비대칭성(asymmetry)이 관측되었다.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

한국 동해안의 변화특성 (A Study on Characteristics of Coastline Change in Eastern Coast Korea)

  • 이종태
    • 수산해양기술연구
    • /
    • 제15권1호
    • /
    • pp.35-42
    • /
    • 1979
  • This paper concerns the receding of the eastern coastline of Korean peninsula at a macroscopic point of view, the result is as following. 1. Eastern coast is gradually developed from maturity stage to full maturity stage. 2. The coastline recession due to sea level rise is amounted to the receding distance, x=0.045 m per yr. 3. The author proposes another classification from the new view point, which is classified by comparing quantities between river supplying sediment loads, and the littoral drifting due to wave actions. According this, eastern coast is receding(Type Q-A), and we could find it's geomorphological characteristics. 4. The general piofile of eastern coast sand beach is erosional storm profile(Type I) which accompany offshore bar. 5. From the wave measuring data of eastern coast(Hoopo port), I can derive the linear regression line of the exceedance probability of wave height from the log-normal distribution. $z=O. 113+4.335 log_lo H, r=0.983.$ Above equation made it possible to estimate $\omega[=P(H>H_c)]for the effective wave height H_c=2. Om4, 4. Om and their corresponding values are considerable (7.8%, 0.3%) 6. Eastern coastline certainly have the tendency of erosive and receding, owing to the sea level rise, poor sediment source and effective wave actions. It's very desirable to survey coastline evolution for a long time systematically, in order to make more elaborate diagnosis.

  • PDF

초기 초신성 잔해의 비열적 전파복사 : 약한 자기장 근사 (NONTHERMAL RADIO EMISSION FROM SNR IN THE PRE-SEDOV STAGE OF EVOLUTION : WEAK MAGNETIC APPROXIMATION)

  • 최승언;정현철
    • 천문학논총
    • /
    • 제10권1호
    • /
    • pp.15-30
    • /
    • 1995
  • It has been recognized that the morphologies of the SNRs from the radio observation are "barrel shaped". To interpret the mechanism of the radiation and the physical state of the environments, we have analytically calculated the dynamical structure of the interacting region in the case where the ejectum has a steep power-law density profile($\rho{\sim}r^{-n}$) and the ambient medium has a shallow power-law density profile($\rho{\sim}r^{-s}$), assuming that the cosmic rays are isotropically accelerated in the shock wave and the magnetic fields are very weak. The calculated synchrotron radio maps show that the emission from the equator is intense and the emissions from the central and polar regions are less intense. Also the thicknesses of the shell are strongly dependent on s and weakly on n. The azimuthal intensity ratio $\alpha$ increases as the efficiency of the cosmic ray acceleration increases and s decreases. We compared the results with the morphology of the SNR A. D. 1006(type I SNR). It does agree with the case of s = 0, w = 0.3 - 0.5. This value for w is consistent with the results by Eichler(1979). It provides us the evidence of the cosmic ray acceleration in the shock wave.

  • PDF

파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델 (A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields)

  • 이종섭;윤은찬;박석희
    • 대한토목학회논문집
    • /
    • 제26권3B호
    • /
    • pp.311-319
    • /
    • 2006
  • 저면경계층에서 부유사와 소류사 flux를 포함하는 실제적인 표사이동에 기초한 지형변화모델(SED-FLUX)이 개발되었다. SED-FLUX는 파랑모듈, 동수역학 모듈 및 부유사농도, 순부상 flux($Q_s$)와 소류사 flux를 계산하는 표사수송 및 확산모듈을 포함하며, 소류사 flux는 파-흐름 공존장에서 검증된 van Rijn의 TRANSPOR 프로그램에 의해 평가되어진다. 저면에서 순부상 flux $Q_s$는 표사확산모듈에서 source/sink 항으로서 평가되어지며, 수심변화모듈은 수심변화량을 계산하고 시간에 따른 bed level의 변화를 계산한다. 모델의 검증을 위하여 소류사이동의 이동한계수심은 방사성 동위원소 추적자를 사용한 현장 실험자료와 파와 흐름에 의한 표사이동한계수심에 대한 몇몇 경험식과 비교되었다. 본 모델을 파에 의한 해빈 단면변화에 적용한 결과 입사파의 특성에 따른 명확한 침식과 퇴적분포를 나타내었다. 끝으로, 이안제 배후에서 파와 해빈류에 의한 수심변화를 계산한 결과 이안제의 배후에서 초기 tombolo의 형성을 보여주었다.