• Title/Summary/Keyword: Event Code

Search Result 230, Processing Time 0.031 seconds

Runtime-Guard Coverage Guided Fuzzer Avoiding Deoptimization for Optimized Javascript Functions (최적화 컴파일된 자바스크립트 함수에 대한 최적화 해제 회피를 이용하는 런타임 가드 커버리지 유도 퍼저)

  • Kim, Hong-Kyo;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.443-454
    • /
    • 2020
  • The JavaScript engine is a module that receives JavaScript code as input and processes it, among many functions that are loaded into web browsers and display web pages. Many fuzzing test studies have been conducted as vulnerabilities in JavaScript engines could threaten the system security of end-users running JavaScript through browsers. Some of them have increased fuzzing efficiency by guiding test coverage in JavaScript engines, but no coverage guided fuzzing of optimized, dynamically generated machine code was attempted. Optimized JavaScript codes are difficult to perform sufficient iterative testing through fuzzing due to the function of runtime guards to free the code in the event of exceptional control flow. To solve these problems, this paper proposes a method of performing fuzzing tests on optimized machine code by avoiding deoptimization. In addition, we propose a method to measure the coverage of runtime-guards by the dynamic binary instrumentation and to guide increment of runtime-guard coverage. In our experiment, our method has outperformed the existing method at two measures: runtime coverage and iteration by time.

DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE

  • Seong, Seung-Hwan;Lee, Tae-Ho;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.785-796
    • /
    • 2009
  • A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

SAFETY ANALYSIS OF INCREASE IN HEAT REMOVAL FROM REACTOR COOLANT SYSTEM WITH INADVERTENT OPERATION OF PASSIVE RESIDUAL HEAT REMOVAL AT NO-LOAD CONDITIONS

  • SHAO, GE;CAO, XUEWU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.434-442
    • /
    • 2015
  • The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

The methods of CADIS-NEE and CADIS-DXTRAN in NECP-MCX and their applications

  • Qingming He;Zhanpeng Huang;Liangzhi Cao;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2748-2755
    • /
    • 2024
  • This paper presents two new methods for variance reduction for shielding calculation in Monte Carlo radiation transport. One method is CADIS-NEE, which combines Consistent Adjoint Driven Importance Sampling (CADIS) and next-event estimator (NEE) methods to increase the calculation efficiency of tallies at points. The other is CADIS-deterministic transport (DXTRAN), which combines CADIS and DXTRAN to obtain higher performance than using CADIS and DXTRAN separately. The combination processes are derived and implemented in the hybrid Monte-Carlo-Deterministic particle-transport code NECP-MCX. Various problems are tested to demonstrate the effectiveness of the two methods. According to the results, the two combination methods have higher efficiency than using CADIS, NEE or DXTRAN separately. In a long-distance photon-transport problem, CADIS-NEE converges faster than NEE and the figure of merit (FOM) of CADIS-NEE is 75.6 times of NEE. In a labyrinthine problem, CADIS-DXTRAN's FOM surpasses that of DXTRAN and CADIS by a factor of 45.3 and 17.7, respectively. Therefore, it is advisable to employ these two novel methods selectively in appropriate scenarios to reduce variance.

A study on the event processing methods for ubiquitous sensor network (유비쿼터스 센서 네트워크를 위한 이벤트 처리 기법에 관한 연구)

  • Cho, Yang-Hyun;Park, Yong-Min;Kim, Hyeon-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • The RFID(Radio Frequency Identification) and the WSN(Wireless Sensor Network) have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPC global which realized the issue proposed the EPC(Electronic Produce Code) Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPC global network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPC global network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Therefore, to address the problems of the existing system, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To examine the minimum conditions, a index and a query index are used to extract complex events. To evaluate the performance of the proposed methods, In the case of the method of extracting complex events based on a bitmap index, we used the existing extraction method and NS2 simulation to evaluate its performance and thus to show its good performance in terms of the number of operation and the processing time for the complex events.

The method of grouping query based on EPCIS to improve the RFID application performance in EPC Network (EPC Network 기반 RFID 응용 시스템의 성능 향상을 위한 EPCIS 주소별 그룹 질의 기법)

  • Park, Sung-Jin;Kim, Dae-Hwan;Son, Min-Young;Yeom, Keun-Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.111-122
    • /
    • 2011
  • These days RFID application has been developed rapidly. It has been applied to many business areas such as logistics and supply chains. The Electronic Product Code (EPC) Network Architecture, an open global standard, is proposed by EPCglobal for developing RFID enabled systems. People who want to obtain the product information which are master information and event information have to apply with EPC Network Architecture. However, EPCIS which has master information and event information has to be accessed base on each EPC. Therefore, there is lots of duplicate accessing to EPCIS because RFID application has to access the same EPCIS over again which makes all performance down in EPC Network. This paper proposes how to reduce access times to EPCIS using EPC grouping based on EPCIS address. We build EPC Network environment to experiment about performance of RFID application system and we prove the improvement of EPC Network. Our result shows the reducing the EPCIS communication time by maximum 99 percentages.

A Study on A Dynamic Reliability Analysis Model (동적신뢰도 평가모델의 연구)

  • 제무성
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.239-246
    • /
    • 2000
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF

A method of event data stream processing for ALE Middleware (ALE 미들웨어를 위한 이벤트 데이터 처리 방법)

  • Noh, Young-Sik;Lee, Dong-Cheol;Byun, Yung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1554-1563
    • /
    • 2008
  • As the interests on RFID technologies increase, a lot of research activities on RFID middleware systems to handle the data acquired by RFID readers are going on actively. Meanwhile, even though various kinds of RFID middleware methodologies and related techniques have been proposed, the common data type which is dealt with in those systems is an EPC code, mainly. Also, there are few researches of the implementation of collecting the stream data queued from RFID readers endlessly and without blocking, classifying the data into some groups according to usage, and sending the resulting data to specific applications. In this paper, we propose the method of data handling in RFID middleware to efficiently process an EPC event stream data using detail filtering, checking of data modification, creation of data set to transfer, data grouping, and various kinds of RFID data format transform. Our method is based on a de facto international standard interface defined in the ALE middleware specification by EPCglobal, and application and service users can directly set various kinds of conditions to handle the stream data.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.