• Title/Summary/Keyword: Even Wear-Leveling

Search Result 11, Processing Time 0.038 seconds

A wear-leveling improving method by periodic exchanging of cold block areas and hot block areas (Cold 블록 영역과 hot 블록 영역의 주기적 교환을 통한 wear-leveling 향상 기법)

  • Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.175-178
    • /
    • 2008
  • While read operation on flash memory is fast and doesn't have any constraints, flash memory can not be overwritten on updating data, new data are updated in new area. If data are frequently updated, garbage collection, which is achieved by erasing blocks, should be performed to reclaim new area. Hence, because the number of erase operations is limited due to characteristics of flash memory, every block should be evenly written and erased. However, if data with access locality are processed by cost benefit algorithm with separation of hot block and cold block, though the performance of processing is high, wear-leveling is not even. In this paper, we propose CB-MG (Cost Benefit between Multi Group) algorithm in which hot data are allocated in one group and cold data in another group, and in which role of hot group and cold group is exchanged every period. Experimental results show that performance and wear-leveling of CB-MG provide better results than those of CB-S.

  • PDF

A method for improving wear-leveling of flash file systems in workload of access locality (접근 지역성을 가지는 작업부하에서 플래시 파일시스템의 wear-leveling 향상 기법)

  • Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.108-114
    • /
    • 2008
  • Since flash memory cannot be overwritten, new data are updated in new area. If data are frequently updated, garbage collection which is achieved by erasing blocks, should be performed to reclaim new area. Hence, because the count of erase operations is limited due to characteristics of flash memory, every block should be evenly written and erased. However, if data with access locality are processed by cost benefit algorithm with separation of hot block ad cold block though the performance of processing is hight wear-leveling is not even. In this paper, we propose CB-MB (Cost Benefit between Multi Bank) algorithm in which hot data are allocated in one bank and cold data in another bank, and in which role of hot bank and cold bank is exchanged every period. CB-MB shows that its performance is 30% better than cost benefit algorithm with separation of cold block and hot block its wear-leveling is about a third of that in standard deviation.

Flash Memory Wear-Leveling using Regulation Pools (마모 제어 영역을 활용한 플래시 메모리 마모평준화)

  • Park, Jeong-Su;Min, Sang-Lyul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1204-1208
    • /
    • 2010
  • In this paper, we propose a flash memory wear-leveling scheme that makes use of meta-data storage region as a regulation pool. By concentrating program and erase operations on the blocks with lower erase counts in the regulation pool, the proposed scheme achieve an even wear-leveling in a simple and efficient way. Experiments with an implementation of the proposed scheme in RS-FTL showed that the erase count deviation is reduced by around 40% through the erase count regulation.

Write Request Handling for Static Wear Leveling in Flash Memory (SSD) Controller

  • Choo, Chang;Gajipara, Pooja;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • The lifetime of a solid-state drive (SSD) is limited because of the number of program and erase cycles allowed on its NAND flash blocks. Data cannot be overwritten in an SSD, leading to an out-of-place update every time the data are modified. This result in two copies of the data: the original copy and a modified copy. This phenomenon is known as write amplification and adversely affects the endurance of the memory. In this study, we address the issue of reducing wear leveling through efficient handling of write requests. This results in even wearing of all the blocks, thereby increasing the endurance period. The focus of our work is to logically divert the write requests, which are concentrated to limited blocks, to the less-worn blocks and then measure the maximum number of write requests that the memory can handle. A memory without the proposed algorithm wears out prematurely as compared to that with the algorithm. The main feature of the proposed algorithm is to delay out-of-place updates till the threshold is reached, which results in a low overhead. Further, the algorithm increases endurance by a factor of the threshold level multiplied by the number of blocks in the memory.

A Block Allocation Policy to Enhance Wear-leveling in a Flash File System (플래시 파일시스템에서 wear-leveling 개선을 위한 블록 할당 정책)

  • Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.574-577
    • /
    • 2007
  • While disk can be overwritten on updating data, because flash memory can not be overwritten on updating data, new data are updated in new area. If data are frequently updated, garbage collection, which is achieved by erasing blocks, should be performed to reclaim new area. Hence, because the number of erase operations is limited due to characteristics of flash memory, every block should be evenly written and erased. However, if data with access locality are processed by cost benefit algorithm with separation of hot block and cold block, though the performance of processing is high, wear-leveling is not even. In this paper, we propose CB-MB (Cost Benefit between Multi Bank) algorithm in which hot data are allocated in one bank and cold data in another bank, and in which role of hot bank and cold bank is exchanged every period. CB-MB showed that its performance was similar to that of others for uniform workload, however, the method provides much better performance than that of others for workload of access locality.

  • PDF

Dynamic Threshold based Even-wear Leveling Policies (동적 임계값을 이용한 메모리 소거)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.5-10
    • /
    • 2007
  • According to the advantageous features of flash memory, its exploitation and application in mobile and ubiquitous related devices as well as voluminous storage devices is being increased rapidly. The inherent properties that are determined by configuration of flash memory unit might restrict the promising expansion in its utilization. In this paper, we study policies based on threshold values, instead of using global search, in order to satisfy our objective that is to decrease the necessary processing cost or penalty for recycling of flash memory space at the same time minimizing the potential degradation of performance. The proposed cleaning methods create partitions of candidate memory regions, to be reclaimed as free, by utilizing global or dynamic threshold values. The impact of the proposed policies is evaluated through a number of experiments, the composition of the optimal configuration featuring the methods is tested through experiments as well.

  • PDF

K Partition-Based Even Wear-Leveling Policy for Flash Memory (K 분할 기반 플래시 메모리 균등소거 방법론)

  • Park Je-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.377-382
    • /
    • 2006
  • Advantageous features of flash memory are stimulating its exploitation in mobile and ubiquitous related devices. The hardware characteristics of flash memory however place restrictions upon this current trend. In this paper, a cleaning policy for flash memory is proposed in order to decrease the necessary penally for recycling of memory minimizing the degradation of performance at the same time. The proposed cleaning algorithm is based on partitioning of candidate memory regions, to be reclaimed as free, into a number of groups. In addition, in order to improve the balanced utilization of the entire flash memory space in terms of 'wearing-out', a free segment selection algorithm is discussed. The impact of the proposed algorithms is evaluated through a number of experiments. Moreover, the composition of the optimal configuration featuring the proposed methods is tested through experiments.

An Optimized File System for SSD (SSD를 위한 최적화 파일시스템)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2010
  • Recently increasing application of flash memory in mobile and ubiquitous related devices is due to its non-volatility, fast response time, shock resistance and low power consumption. Following this trend, SSD(Solid State Disk) using multiple flash chips, instead of hard-drive based storage system, started to widely used for its advantageous features. However, flash memory based storage subsystem should resolve the performance bottleneck for writing in perspective of speed and lifetime according to its disadvantageous physical property. In order to provide tangible performance, solutions are studied in aspect of reclaiming of invalid regions by decreasing the number of erasures and distributing the erasures uniformly over the whole memory space as much as possible. In this paper, we study flash memory recycling algorithms with multiple management units and demonstrate that the proposed algorithm provides feasible performance. The proposed method utilizes the partitions of the memory space by utilizing threshold values and reconfigures the management units if necessary. The performance of the proposed policies is evaluated through a number of simulation based experiments.

File System for Performance Improvement in Multiple Flash Memory Chips (다중 플래시 메모리 기반 파일시스템의 성능개선을 위한 파일시스템)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.17-21
    • /
    • 2008
  • Application of flash memory in mobile and ubiquitous related devices is rapidly being increased due to its low price and high performance. In addition, some notebook computers currently come out into market with a SSD(Solid State Disk) instead of hard-drive based storage system. Regarding this trend, applications need to increase the storage capacity using multiple flash memory chips for larger capacity sooner or later. Flash memory based storage subsystem should resolve the performance bottleneck for writing in perspective of speed and lifetime according to its physical property. In order to make flash memory storage work with tangible performance, reclaiming of invalid regions needs to be controlled in a particular manner to decrease the number of erasures and to distribute the erasures uniformly over the whole memory space as much as possible. In this paper, we study the performance of flash memory recycling algorithms and demonstrate that the proposed algorithm shows acceptable performance for flash memory storage with multiple chips. The proposed cleaning method partitions the memory space into candidate memory regions, to be reclaimed as free, by utilizing threshold values. The proposed algorithm handles the storage system in multi-layered style. The impact of the proposed policies is evaluated through a number of experiments.

  • PDF

An Empirical Study on Linux I/O stack for the Lifetime of SSD Perspective (SSD 수명 관점에서 리눅스 I/O 스택에 대한 실험적 분석)

  • Jeong, Nam Ki;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.54-62
    • /
    • 2015
  • Although NAND flash-based SSD (Solid-State Drive) provides superior performance in comparison to HDD (Hard Disk Drive), it has a major drawback in write endurance. As a result, the lifetime of SSD is determined by the workload and thus it becomes a big challenge in current technology trend of such as the shifting from SLC (Single Level Cell) to MLC (Multi Level cell) and even TLC (Triple Level Cell). Most previous studies have dealt with wear-leveling or improving SSD lifetime regarding hardware architecture. In this paper, we propose the optimal configuration of host I/O stack focusing on file system, I/O scheduler, and link power management using JEDEC enterprise workloads in terms of WAF (Write Amplification Factor) which represents the efficiency perspective of SSD life time especially for host write processing into flash memory. Experimental analysis shows that the optimum configuration of I/O stack for the perspective of SSD lifetime is MinPower-Dead-XFS which prolongs the lifetime of SSD approximately 2.6 times in comparison with MaxPower-Cfq-Ext4, the best performance combination. Though the performance was reduced by 13%, this contributions demonstrates a considerable aspect of SSD lifetime in relation to I/O stack optimization.