
 181

I. INTRODUCTION

Flash memory uses non-movable elements for the

execution of data access, fetch, and data retrieve operations.

Non-volatile memory chips retain data even in the case of

power loss. The form factor and capacity integrate a solid-

state drive (SSD) into a mass storage device within a system

rather than using it as a portable device because of a few of

its complexities and limitations [1].

A. SSD and Premature Wear-Out Problem

Although they offer the advantages of faster access time,

reduced noise, low power consumption, and high durability,

SSDs are facing a major roadblock for growth in terms of

their endurance period. The lifetime of a flash memory is

defined in terms of the endurance period, which is

dependent on the number of program and erase (P/E)

cycles. NAND flash blocks typically have bit 1 stored in

them, and every time they are programmed, they acquire

bit 0. The floating transistor gate of the NAND flash loses

its oxide layer with repeated erase operations. Further, on

the basis of the statistical average calculated from industry

implementations by memory design companies, we can

approximate that single-level cells become read-only after

100,000 P/E cycles, and multi-level cells, after 10,000 P/E

cycles [2].

Received 02 April 2014, Revised 15 April 2014, Accepted 08 July 2014
*Corresponding Author Chang Choo (E-mail: chang.choo@sjsu.edu, Tel: +1-408-924-3980)
Department of Electrical Engineering San Jose State University San Jose, CA 95112, USA.

 http://dx.doi.org/10.6109/jicce.2014.12.3.181 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li­censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(3): 181-185, Sep. 2014 Regular paper

Write Request Handling for Static Wear Leveling in Flash
Memory (SSD) Controller

Chang Choo
1*

, Pooja Gajipara
1
, and Il-Young Moon

2
, Member, KIICE

1Department of Electrical Engineering, San Jose State University, San Jose, CA 95112, USA
2School of Computer Science & Engineering, Korea University of Technology and Education, Cheonan 330-708, Korea

Abstract

The lifetime of a solid-state drive (SSD) is limited because of the number of program and erase cycles allowed on its NAND

flash blocks. Data cannot be overwritten in an SSD, leading to an out-of-place update every time the data are modified. This

result in two copies of the data: the original copy and a modified copy. This phenomenon is known as write amplification and

adversely affects the endurance of the memory. In this study, we address the issue of reducing wear leveling through efficient

handling of write requests. This results in even wearing of all the blocks, thereby increasing the endurance period. The focus

of our work is to logically divert the write requests, which are concentrated to limited blocks, to the less-worn blocks and then

measure the maximum number of write requests that the memory can handle. A memory without the proposed algorithm

wears out prematurely as compared to that with the algorithm. The main feature of the proposed algorithm is to delay out-of-

place updates till the threshold is reached, which results in a low overhead. Further, the algorithm increases endurance by a

factor of the threshold level multiplied by the number of blocks in the memory.

Index Terms: Dynamic wear leveling, Flash memory, Solid-state drive, Static wear leveling

Open Access

mailto:chang.choo@sjsu.edu

J. lnf. Commun. Converg. Eng. 12(3): 181-185, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.181 182

B. Causes of Wear: Write and Erase

For any data update, hard disk drives (HDD) provide an

overwrite feature, but in the case of SSDs, this feature is not

possible. Therefore, whenever a data request comes in,

SSDs address this by performing functions, such as out-of-

place update, wear leveling, and garbage collection. Further,

with every out-of-place update, the number of write

operations performed increases, and this factor is known as

Write Amplification. While a junk copy remains in the

memory block, free space needs to be created for other

memory operations. At this point, garbage collection is

performed; this handles the function of tracking garbage or

junk data and then, performing an erase operation.

The main obstacle in dealing with the write and erase

procedure is that although program write and read can be

done in terms of pages, the erase operation needs to be done

in terms of blocks [3]. Therefore, for the case wherein there

is a miniscule amount of data present in the memory and a

memory write request comes in, many algorithms have been

designed in such a way that they initiate an operation to

erase the whole block from the initial stage, thus decreasing

the endurance period and defeating the whole purpose of

out-of-place update, wear leveling, and garbage collection.

C. Options for Improving Endurance

In this study, we attempt to decrease the write amplify-

cation concerned with an out-of-place update to a certain

extent through efficient handling of write requests up to the

threshold level, which results in an increased endurance

period.

II. WEAR LEVELING AND FLASH MEMORY
MANAGEMENT

Two basic wear leveling types, namely static wear

leveling and dynamic wear leveling, have been followed

[3]. The basic principle of any wear leveling algorithm

includes the following: 1) taking advantage of hot and

cold data, 2) placing hot and cold data, and 3) avoiding

additional data migration.

In this study, hot data were frequently updated, and cold

data remained idle for a considerable amount of time

without any update.

A. Dynamic Wear Leveling

Dynamic wear leveling allows a block to be repeatedly

programmed and erased to its set limit and then, proceeds to

use other blocks. However, this type of algorithm does not

attempt to move cold data, and hence, some cold data may

remain in a block without update, thereby leading to

overutilization of some frequently used blocks and thus, in

an uneven wear-out of blocks.

B. Static Wear Leveling

Static wear leveling involves moving cold data to the

more worn-out blocks and hot data to the less worn-out

blocks; thus, this algorithm tries to even out the number of

erasures in a relatively efficient manner. However, there is a

risk of increasing the endurance if additional data migration

is not effectively handled, with added power loss.

C. Flash Memory Management

The NAND flash controller manages a memory operation

with the following three important policies: out-of-place

update, wear leveling, and garbage collection. Typically, it

handles the logical to physical block address translation. All

these are termed to be part of the flash translation layer.

III. DIFFERENT STATIC WEAR LEVELING
IMPLEMENTATION TECNIQUES

Three static wear leveling algorithms have been thoroughly

researched for this project. They are as follows:

A. Rejuvenator

Like every wear leveling algorithm, the aim of the

rejuvenator [4] is to even out the erase count of all the

memory blocks so that no single memory block reaches its

maximum erase count because if any one of the blocks

reaches its maximum erase count, the entire memory will be

out of use. The rejuvenator separates hot data and cold data

and arranges them in order to wear them evenly [4]. Hot

data identification is an integral part of the rejuvenator.

Fig. 1. Generic flash memory block architecture.

Write Request Handling for Static Wear Leveling in Flash Memory (SSD) Controller

http://jicce.org 183

It has a window-based scheme to identify the hot data. At

any point of time, the logical address with the highest

counter value is considered hot.

B. Dual Pool

The dual pool [5] algorithm is based on two key ideas: to

cease the wearing of blocks by storing cold data and to

smartly leave alone blocks until wear leveling takes effect.

 This algorithm logically divides the logical block add-

ressing (LBA) into two pools, namely hot pool and cold

pool. When an address in the hot pool gets hotter or any

address in the cold pool gets colder, it is moved to the other

pool, thereby maintaining even erasure cycles. Two main

processes that are included in the dual pool algorithm are

cold-data migration and hot-cold migration. Cold data

should be moved away from young blocks, and conversely,

old blocks should start storing cold data [5].

C. Tri Pool

This algorithm is an extended version of dual pool [5].

Apart from the hot and cold pools, it introduces another pool

called the neutral pool. The neutral pool contains blocks that

have an erase count of around the average erase cycle of the

entire block array.

The fundamental principle of this algorithm is that

whenever there is a swapping of data from the hot pool to

the cold pool, it is performed through the neutral pool. The

decision making of which address to put in which pool is

taken depending on the addresses in the neutral pool [6].

IV. VERIFICATION AND RESULTS

In this study, a miniature version of an industrial SSD is

taken into consideration. A memory of 32 kB is considered,

which is split into 4 blocks, each having two 4-kB pages.

This is similar to the format of a practical NAND flash

memory.

One dummy block is kept as overprovisioning, which is

used while transferring or switching data between two

blocks. This extra block seems to be an overhead since the

Fig. 2. Block and page assignment considered for the design.

memory under consideration is very small. For bigger

memory, this block costs a very low percentage of the whole

memory. The overhead may manifest in term of space, but it

makes data migration significant.

A schematic representation of a memory used for testing

in this study is shown in the Fig. 2.

As mentioned above, the premature wearing of the

memory is due to the spatial locality of the workloads. The

workload here refers to the write requests coming in to the

memory. This algorithm takes into consideration only the

write requests. The reason for this assumption is that only

write requests cause the rewriting of data inside the memory.

Serving a read request involves a simple pointing out of the

address for which the read request has been encountered.

Hence, the focus of the proposed algorithm is to uniformly

distribute the write requests coming in, to a concentrated

part of the memory.

The stimuli of the proposed algorithm are as follows: 1) a

specified address and 2) data to be written at this address.

When a write request is encountered, a series of actions is

triggered. Every write request comes with 8-bit data and 25-

bit address. According to the mapping table, a physical

address is directed for the particular data. There is a block-

wise mapping of write operations.

A counter is allotted to every block. The counter has a

very specific structure wherein the two most significant bits

(MSBs) are called Block ID and the two least significant

Fig. 3. Block counter format.

Fig. 4. State machine for the design.

J. lnf. Commun. Converg. Eng. 12(3): 181-185, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.181 184

Table 1. Analytical comparison

Memory without

algorithm

Memory with

algorithm

Total write operations executed

for 32 write requests

19 36

Missed write operations 13 None

bits (LSBs) are called LINK. The middle ten bits show the

actual count value and are incremented with each write

request served (Fig. 3). A saturation level is set (and can be

modified) for every counter corresponding to the number of

write operations within that block. Whenever this saturation

level is sensed for a block, all the future write requests

coming to it will be diverted to some other fresh block,

which has a lower counter value implying a less-used block.

A. State Machine

The design was implemented in Verilog code in the state-

machine format. There are 10 states carrying out different

tasks (Fig. 4).

Throughout write processing, a register is used as an

indicator whenever a write request is being processed and

the read operations are kept at bay when a particular write

request is being processed.

V. IMPLEMENTATION

The simulation results obtained in this study are in terms

of the number of write operations that the memory can

handle. Table 1 shown below keeps a record of the number

of write requests accepted by the memory with and without

the proposed algorithm.
The simulation results presented below are obtained using

the proposed algorithm with 36 write requests, of which 34

were concentrated to only two blocks as shown below. The

saturation level set for every block is 16 write operations.

The same test bench is run through both the memories with

and without the proposed algorithm. It can be observed that

the number of write requests served significantly changes

upon the implementation of the algorithm.

Different test benches give different values for the

maximum number of write operations executed. This

variation is due to the spatial locality of the write requests.

The more concentrated the write requests are, the smaller is

the number of write operations that it can handle before

reaching the saturation set for it.

The proposed design has been tested for various cases; in

the following paragraphs, we discuss four of these different

cases that the design has handled.

Case 1: The proposed design is checked for handling all the

available blocks with a write request for each block.

Case 2: Write requests are sent to a single block till its

threshold is reached in order to observe how the

design behaves.

Case 3: One block is filled completely, and all the other blocks

are filled one short of the threshold.

Case 4: The proposed design is checked for data handling

by using a dummy block.

It can be analytically concluded that the increase in the

endurance of the memory is related to the saturation level

set for each block and the number of blocks in the memory.

If S is saturation level set for each block and B is number of

blocks, then the maximum number of write requests handled

by the memory that are concentrated for a single block

without the proposed algorithm is S, whereas the number of

write requests handled by the memory with the proposed

algorithm is S × B.

One of the major contributions of this study is decreasing

the additional overheads due to the data migration. Again,

following this algorithm, the number of data swaps between

the blocks, which adds to the overhead, is directly related

to the saturation level set for each block. The relative

dependence of the number of block data swaps and the

saturation level set are discussed in the next section.

VI. VERIFICATION AND RESULTS

In this study, the issue of wear leveling faced in the case

of the SSD controller design has been addressed with

respect to write request handling based on the static

rejuvenator algorithm [4]. Memory blocks have been sim-

plified as a two-dimensional array, and the data are written

into it; further, the concept of a write-protected memory

block has been implemented and analyzed along with

different counters that act as flags to simulate different

conditions.

The main feature of the proposed algorithm is to delay

out-of-place updates till the threshold is reached, resulting in

a low overhead. In addition, it increases endurance by a

factor of the threshold level multiplied by the number of

blocks in the memory.

REFERENCES

[1] S. Kumar and R. Vijayaraghavan, Solid state drive (SSD) FAQ

[Internet], Available http://www.dell.com/downloads/global/produ

cts/pvaul/en/Solid-State-Drive-FAQ-us.pdf.

[2] Samsung, Why SSDs are awesome [Internet], Available

http://www.samsung.com/global/business/semiconductor/minisite/S

http://www.dell.com/downloads/global/produ
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/about/whitepaper01.html

Write Request Handling for Static Wear Leveling in Flash Memory (SSD) Controller

http://jicce.org 185

SD/global/html/about/whitepaper01.html.

[3] A. R. Rahiman and P. Sumari, “Solid state disk: a new storage

device for video storage server,” in Proceedings of the International

Symposium on Information Technology, Kuala Lumpur, Malaysia,

pp. 1-8, 2008.

[4] M. Murugan and D. H. C. Du, “Rejuvenator: a static wear leveling

algorithm for NAND flash memory with minimized overhead,” in

Proceedings of the IEEE 27th Symposium on Mass Storage Systems

and Technologies, Denver, CO, pp. 1-12, 2011.

[5] L. P. Chang, “On efficient wear leveling for large-scale flash-

memory storage systems,” in Proceedings of the 2007 ACM

Symposium on Applied Computing, Seoul, Korea, pp. 1126-1130,

2007.

[6] S. Teshome and T. S. Chung, “A tri-pool dynamic wear leveling

algorithm for large scale flash memory storage systems,” in

Proceedings of the 2011 International Conference on Information

Science and Applications, Jeju, Korea, pp. 1-6, 2011.

received his B.S. and M.S. in Industrial Engineering from Seoul National University, Korea, in 1977 and 1981,
respectively, and his MS and PhD in Computer and Systems Engineering from Rensselaer Polytechnic Institute,
Troy, NY, USA, in 1982 and 1986, respectively. From 1979 to 1981, he was Researcher at the Korea Advanced
Energy Research Institute, and from 1986 to 1991, he was Assistant Professor at Department of Electrical
Engineering, Worcester Polytechnic Institute, Worcester, MA, USA. Since 1991, he has been on the faculty of
Electrical Engineering Department at California State University, San Jose. He was with several Silicon Valley
companies, including Altera, National Semiconductor, and Philips Semiconductor. His current research interests
include embedded SoC design, DSP architecture and systems, and digital image/audio processing. Dr. Choo is a

member of the IEEE, SPIE, ASEE, and Eta Kappa Nu.

received my Bachelor's in Technology degree in Electronics and Telecommunication Engineering from
South Gujarat University, India in 2011. I pursued my Master’s degree in Electrical Engineering from San Jose
State University, California in May 2014. My interest in this project emerges from the fact that Solid State Drive is
the most preferred mass storage device today, but has a limiting factor of low endurance. With the esteem
guidance of Prof. Chang Choo, I am proposing a novel write request handling technique to reduce the wearing
and improve overall life of the memory.

received his B.S., M.S., and Ph.D. in Telecommunication and Information Engineering from Hankuk Aviation
University, Goyang, Korea in 2000, 2002, and 2005, respectively. He is currently an associate professor at School
of Computer Science & Engineering, Korea University of Technology and Education, Korea. His research interests
are in the areas of mobile IP, wireless LANs, wireless TCP, and ad hoc networks. He is a member of Korean
Institute of Communication Sciences, Korea Institute of Electronics Engineers, and Korea Navigation Institute.

http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/about/whitepaper01.html

