• 제목/요약/키워드: Evaporation performance

검색결과 448건 처리시간 0.024초

증발수 유량이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of Evaporation Water Flow Rate on the Performance of an Indirect Evaporative Cooler)

  • 추현선;이관수;이대영
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.714-721
    • /
    • 2006
  • In evaporative cooling applications, the evaporation water is supplied usually sufficiently larger than the amount evaporated to enlarge contact surface between the water and the air. Especially in indirect evaporative coolers, however, if the evaporation water flow rate is excessively large, the evaporative cooling effect is not used for heat absorption from the hot fluid but spent to the sensible cooling of the evaporation water itself. This would result in a decrease in the cooling performance of the indirect evaporative cooler. In this study, the effects of the evaporation water flow rate on the cooling performance are investigated theoretically. The cooling process in an indirect evaporative cooler is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and the evaporation water. Based on the exact solutions, it is analyzed how much the cooling performance is affected by the evaporation water flow rate. The results show that the decrease in the cooling effectiveness is substantial even for a small flow rate of the evaporation water and the relative decrease is more serious for a high-performance evaporative cooler.

Thermal Evaporation 증발원 개발 및 응용에 관한 연구 (A Study on the Development and Application of Thermal Evaporation Source)

  • 김관도
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.19-22
    • /
    • 2020
  • The thermal evaporation source is used to prepare thin films by physical vapor deposition. Materials of metals, organic materials, were tested and explained for thermal evaporation experiments. The developed effusion cell performance depends on the type of deposition material, the size of the crucible, the performance of the reflector, etc. and the proper conditions were found by producing, comparing and analyzing several sets of effusion cell to quantitatively evaluate the performance of the cell. The effusion cell for thermal evaporation source is used to prepare thin films of Ag, Cu, Mg.

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

진공 증발에 의한 폐윤활유 속의 수분 제거에 관한 실험적 연구 (An Experimental Study on the Dewatering from the Waste Lubrication Oil by Vacuum Evaporation)

  • 정상현;박성제;홍원석;김용진;구경회
    • 에너지공학
    • /
    • 제12권3호
    • /
    • pp.216-222
    • /
    • 2003
  • 실험실 규모의 진공 증발 수분 제거 시스템을 이용하여, 압력, 윤활유의 온도, 초기 수분농도 및 윤활유 분사 노즐의 형태 등 폐윤활유 속에 포함된 수분 제거 성능에 영향을 미치는 각각의 운전 변수들에 대한 실험적인 연구를 수행하였다. 연구의 결과 압력 및 폐윤활유 온도의 증가는 수분 제거 성능에 매우 중요한 변수임을 확인하였으며, 또한 진공 증발실로 폐윤활유를 분사하기 위한 노즐의 형태는 다공성 매질의 노즐 형상인 경우가 가장 우수한 수분 증발 성능을 나타내었다.

LiBr 수용액을 이용한 수평관 유하액막 증발의 촉진관 전열향상 특성 (Heat Transfer Enhancement Characteristics for Falling-Film Evaporation on Horizontal Enhanced Tubes with Aqueous LiBr Solution)

  • 김동관;김무환
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1267-1276
    • /
    • 1998
  • Falling-film evaporation experiments with aqueous lithium bromide (LiBr) solution were performed to investigate the heat transfer characteristics of enhanced copper tubes. Enhanced tubes (a knurled tube, a spirally grooved tube, and a tube coated with $20{\mu}m$ aluminum particles) and a bare tube were selected as test specimens. Averaged evaporation fluxes of water were obtained from horizontal tubes with various film Reynolds numbers, system pressures, LiBr concentrations and degrees of wall superheat. The enhanced performance of steam generation was compared between tubes with varying parameters. The knurled tube geometry showed the most excellent performance among the tubes tested. The specified enhanced tubes were more useful for generating steam on a low grade heat source such as waste heat.

증발압력 병렬제어 냉동시스템의 성능해석 (Performance Analysis of a Refrigeration System with Parallel Control of Evaporation Pressure)

  • 이종석
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.567-573
    • /
    • 2008
  • The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an evaporation pressure regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted.

산질화 표면에서의 액적 증발 열전달 성능 분석 (Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation)

  • 김대윤;이성혁
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.203-208
    • /
    • 2019
  • In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.

방사성(放射性) 폐액(廢液)의 자연증발(自然蒸發)에 관한 연구(硏究) (A Study on the Evaporation of Radioactive Liquid Waste)

  • 강일식;김태국;유성연
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.18-26
    • /
    • 1993
  • The performance of the evaporation facility of low radioactive liquid waste is studied experimentally. The evaporation facility comprises storage pools, feeding pumps, evaporation units with 1,040 sheets of cloth and air handling units. As the results of this study, it is found that the evaporation rate increases as the waste feed rate increases, the relative humidity of induced air decreases, and the air velocity increases. The modified Dalton's evaporation equation derived from experimental data is $E_h=(0.0168+0.0141V){\Delta}H$. The optimum operating conditions of the evaporation facility are waste feed rate of $4.5./hr.m^2$ and air velocity of 1.47m/sec.

  • PDF

유동 방향이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of flow direction on the performance of an indirect evaporative cooler)

  • 추현선;이관수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.743-748
    • /
    • 2006
  • Ren et al. analyzed the performance of the indirect evaporative cooler according to the direction of the flow considering evaporation water flow and wetness. However the effect of NTU of each channel on the performance of the indirect evaporative cooler according to the direction of the flow was not analyzed exactly. In this study the effect of the direction of the flow on the Indirect evaporative cooling performance changing NTU of each channel are investigated theoretically. The cooling process of the indirect evaporative cooler by flow direction is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and evaporation water. Based on the exact solution in the case of different NTU of each channel, we study the change of the distribution of the temperature according to each flow direction and at the same time analyze the effect of the flow direction on the cooling performance.

  • PDF

R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석 (Performance analysis of R404A refrigeration system using R744 as secondary refrigerant)

  • 오후규;손창효
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.