• 제목/요약/키워드: Evaporation Coating

검색결과 167건 처리시간 0.02초

알루미늄의 진공증발과 열산화에 의한 알루미나 복합분리막의 제조 및 특성분석 (Synthesis and Characterization of Alumina Composite Membrane by Al Evaporation and Thermal Oxidation)

  • 이동호;최두진;현상훈
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.349-358
    • /
    • 1995
  • The ceramic composite membrane was synthesized by thermal oxidation after evaporation of Al on the support prepared by slip casting process. Oxidation was performed at $700^{\circ}C$ and 80$0^{\circ}C$ under dry oxygen atmosphere. It was considered as optimum oxidation condition that the membrane showed a knudsen behaviro. A further oxidation resulted in an increase of gas permeability because top layer became densified. Then, a multi-layered composite membrane was synthesized through a sol-gel method, evaporation and thermal oxidation of Al coating processes. While the membrane was thermally stable up to 80$0^{\circ}C$, gas permeability was rapidly decreased even at a slight amount of deposition of Al.

  • PDF

Yttirum Oxyfluoride 원료의 고상합성 및 서스펜션 플라즈마 스프레이 코팅 응용 (Solid-State Synthesis of Yttirum Oxyfluoride Powders and Their Application to Suspension Plasma Spray Coating)

  • 박상준;김형순;이성민
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.710-715
    • /
    • 2017
  • We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using $Y_2O_3$ and $YF_3$ as raw materials. The synthesis of crystalline YOF was started at $300^{\circ}C$ and completed at $500^{\circ}C$. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed $Y_2O_3$ and $YF_3$ powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and $Y_2O_3$, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.

폴리머 안경렌즈의 반사방지 코팅효과 연구 (A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens)

  • 김기출
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.216-221
    • /
    • 2017
  • 폴리머 안경렌즈를 제조할 때 가시광선 영역에서 투과되는 빛을 증가시키고, 안경렌즈 표면에 형성되는 허상을 방지하는 반사방지 기능은 매우 중요하다. 본 연구에서는 굴절률 1.56, 1.60 및 1.67을 갖는 안경렌즈를 폴리머 렌즈 모노머 및 이염화 이부틸 주석 촉매제, 알킬 인산 에스터 이형제 등의 혼합물을 인젝션 몰드 방법으로 열중합 공정을 적용하여 제조하였다. 폴리머 안경렌즈 표면에서의 반사방지 효과를 조사하기 위하여 다층 박막 반사방지 코팅 구조(양면 또는 단면 코팅), 3층 박막의 Gaussian gradient-index profile 불연속 근사 반사방지 코팅 구조, 3층 박막의 quarter-wavelength 근사 반사방지코팅 구조 등 다양한 반사방지 코팅 구조를 설계하였고, E-beam 증착 시스템을 이용하여 열중합공정으로 제조된 폴리머 안경렌즈에 각각 코팅하였다. 폴리머 안경렌즈의 광학적 특성은 UV-visible spectrometer로 분석하였다. 반사방지 코팅 층을 구성하는 박막의 굴절률, 표면 거칠기 등의 소재 특성은 Ellipsometer와 원자힘 현미경(AFM)으로 분석하였다. 분석결과, 굴절률 1.56의 낮은 굴절률을 갖는 폴리머 안경렌즈에서 가장 효과적인 반사방지 코팅 구조는 다층 박막 반사방지 코팅 구조의 양면코팅이었다. 하지만 굴절률 1.67의 고굴절률 안경렌즈에 대해서는 3층 박막의 Gaussian gradient-index profile 불연속 근사반사방지 코팅 구조의 양면 코팅도 다층박막 반사방지 코팅구조의 양면코팅에 상응하는 반사방지 효과를 나타내었다.

표면처리된 흑연 보트를 이용한 알루미늄의 증발 특성 (Evaporation Characteristics of Aluminum by Using Surface-treated Graphite Boat)

  • 정재인;양지훈
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2009
  • Resistive heating sources are widely used to prepare thin films by vapor deposition because they are cheap, and easy to install and handle in vacuum system. Graphite is one of materials used to make the resistive heating source, but until now only limited applications have been possible as it reacts easily with evaporating materials at high temperature. In this study, evaporation characteristics of aluminum have been investigated by using graphite boat thermally treated with BN powder. The employed graphite boat has been prepared by spray-coating BN power onto the cavity surface of the boat and thermal treatment with aluminum in vacuum at the temperature of more than $1400^{\circ}C$. The voltage-current characteristics as well as resistivity changes of the graphite boat have been investigated during aluminum evaporation according to the applied voltage and time. The evaporation aspect has been picturized during flash evaporation for 40 seconds based on the characterization results. The evaporation rate of the graphite boat has been compared with that of BN boat. The graphite boat showed some different characteristics compared with BN boat, in that the evaporation occurred at the last stage of flash evaporation. The film appearance according to the applied voltage has been compared, and also the reflectance of the resulting film has been investigated according to the film thickness. It has been found that the graphite boat thermally treated with BN powder can be used for aluminum evaporation without problem.

돌리를 이용한 도막 부착력 시험의 영향 인자에 관한 연구 (A study on affecting factors by using dolly in coating adhesion test)

  • 백윤호;손성모;박충서
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.186-194
    • /
    • 2014
  • Establishment of adhesion strength measurement procedure for marine epoxy coatings was conducted in order to ensure reliability of the test results. It was found that (1) the increase in thickness of the substrates would induce increase of pull-off strength. Especially, the increase in adhesion strength with the substrate thickness increment was attributed to the transition of stress mode to the pure tensile mode excluding bending effect. (2) The longer curing time, the higher pull-off strength. It may be due to higher cross-linking density of the coating (3) The pull-off strength increases as coating thickness increases due to the diminishment of bending effect (4) The longer drying time after water immersion, the higher pull-off strength. It may be due to the evaporation of water molecule at the coating-substrate interface.

의료용 도뇨관 표면의 도선용 구리 박막 증착을 위한 스퍼터링-열증착 연속공정장비의 설계 및 개발 (Design and Development of Sputter-evaporation System for Micro-wiring on Medical Catheter)

  • 장준근;정석
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.62-71
    • /
    • 1999
  • Integrating micro-machined sensors and actuators on the conventional devices with the copper power lines was incompatible to fabricate the mass produced micro electromechanical system (MEMS) devices. To achieve the compatibility of the wiring method between MEMS parts and devices, we developed the three-dimensional sputter-evaporation system that coats micropatterned thin copper films on the surface of the MEMS element. The system consists of a process chamber, two branch chambers, the substrate holder, and a linear-rotary motion feedthrough. Thin copper film was sputtered and evaporated on the biocompatible polymer, Pellethane$^{circed{R}}$ and silicone, catheter that is 2 mm in diameter and 700 mm in length. The metal film coating technique with three-dimensional thin film sputter-evaporation system was developed to apply the power and signal lines on the micro active endoscope. In this paper, we developed the three-dimensional metal film sputter-evaporation system operated on the low temperature for the biopolymeric substrates used in the medical MEMS devices.

  • PDF

증발을 고려한 Wafer Spin Coating 박막 예측에 관한 수치 해석적 연구

  • 노영미;임익태;김광선
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.20-26
    • /
    • 2002
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be 1-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time various film thickness is analyzed according to the var ious solvent fraction in the coating liquid and in the bulk of the overlying gas and the temperature variation in the liquid film during the spin coating is estimated.

  • PDF

티타늄합금 코팅된 자동차 부품의 마모특성 향상에 관한 연구 (Study on the Improvement of wear properties of Automobile elements in Titanium alloy Coated)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제17권5호
    • /
    • pp.574-580
    • /
    • 2013
  • 본 논문에서는 박막코팅기술의 공정은 고경도 박막과 질화층의 접합력을 높이기 위하여 적용하였다. 이 박막코팅기술은 프레스 금형에 사용되는 경도와 인성을 얻을 수 있는 복합 박막을 형성했다. 이러한 박막 코팅 생산 기술은 물리증착방법을 이용하여 진공 챔버의 진공도를 증가하고, 건파워의 투사율을 향상시켰다. 티타늄합금 타겟은 각종 정밀가공 부품에 복합박막코팅기술 개발을 통하여 성능과 표면재질을 개선하였다.

전자회절도형을 이용한 무기시료의 격자상수 측정법 연구 (An Investigation of Lattice Parameter Measurement of Inorganic Crystals by Electron Diffraction Patterns)

  • 이영부;김윤중
    • Applied Microscopy
    • /
    • 제29권1호
    • /
    • pp.75-81
    • /
    • 1999
  • 본 실험에서 얻어진 결론을 요약하면 아래와 같다. (1) 저진공도의 sputter coater를 이용하여 Au 내부 표준시편을 제작하는 최적 조건은 9mA의 전류로 100 초간 coating하는 것이다. (2) 고진공도의 evaporation coater를 이용하여 Al 내부 표준시편을 제작하는 최적 조건은 7kV의 전압으로 10분간 coating하는 것이다. (3) Au 내부 표준시편을 이용하여 측정한 홍주석 격자상수 값의 측정오차는 정밀도가 1.2% 이하이고, 정확도는 0.3% 이하이다. (4) Au 내부 표준시편을 이용하여 측정한 알바이트 장석 격자상수 값의 측정오차는 정밀도가 0.5% 이하이고, 정확도는 1.1% 이하이다. (5) 내부 표준시편을 사용하여 격자상수를 측정할 때 가장 심각한 오차는 전자회절도형의 거리 및 각도 측정시 발생한다. 체계적인 측정 방법과 정밀도 높은 측정 도구의 사용이 필요하다. (6) 시료나 TEM 조건 때문에 분말 XRD 방법이나 수렴성빔 전자회절법으로 격자상수를 구할 수 없는 경우에는 내부 표준시편을 이용한 TEM 격자상수 측정법이 좋은 대안이 된다.

  • PDF

수용성 염산슈도에페드린과 난용성 테르페나딘의 구형정석조립법과 액중미립구법을 이용한 서방성펠렛 복합제제의 개발 (Development of Multiparticulate-system Composed of Sustained Release-microspheres of Pseudoephedrin${\cdot}$HCI and Immediate Release-pellets of Terfenadine Using Solvent Evaporation Method and Spherically Agglomerated Crystallization Process)

  • 이계주;도기찬;김은희;박종범;황성주
    • 약학회지
    • /
    • 제41권3호
    • /
    • pp.305-311
    • /
    • 1997
  • Sustained release-microspheres and immediate release-pellets were prepared to develop a controlled release multiparticulate system containing both water soluble and insoluble dr ug. Pseudoephedrin.HCl (EPD) and terfenadine (TRF) were used as model drugs, respectively. Sustained release-EPD microspheres were prepared by solvent evaporation method using Eudragit RL or RS as a matrix combined with pH-insensitive film coating. Smaller EPD microspheres were obtained when smaller amount of Eudragit as a matrix material or larger amount of magnesium stearate as a dispersing agent was used. However the obtained microspheres did not show syfficient sustained release characteristics. About 97% of EPD was released after 1 hr irrespective of matrix material used. Subsequent coating of the microspheres with pH-insensitive polymer such as Eudragit RS or ethylcelulose (EC) resulted good sustained in 37.5, 73.3 and 92.0% release of encapsulated EPD in distilled water after 1, 3 abd 7 hr, respectively. It corresponds to mean dissolution time (MDT) of 2.3 hr, which is much larger than that of un-coated EPD microspheres (0.0048 hr). Immediate release TRF pellets were prepared by spherically agglomerated crystallization using Eudragit E as an inert matrix and methylene chloride as a liquid binder. Using Eudragit E alone as a matrix resulted in satisfactory physical properties of the pellets such as sphericity, surface texture and flowability, but led to slower release of TRF from pellets than un-modified TRF powder (MDT of 1.70 vs 1.43 hr in pH 1.2 dissolution medium). Introducing propylene glycol or sodium lauryl sulfate as an emulsifier brought about faster release of TRF from pellets (MDT of 1.14 and 0.95 hr, respectively). In conclusion, microencapsulation by solvent evaporation combined with film coating and spherically agglomerated crystallization were successfully utilized to prepare controlled release multiparticulate system composed of sustained release EPD-microspheres and immediate release TRF pellets.

  • PDF