• Title/Summary/Keyword: Evaluation of Structural Performance

Search Result 1,602, Processing Time 0.032 seconds

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Performance Evaluation of Composite Safety Barrier for Bridge by Vehicle Impact Simulation (차량 충격 시뮬레이션을 통한 복합소재 교량용 방호울타리의 성능 분석)

  • Kim, Seung-Eock;Jeon, Shin-Youl;Hong, Kab-Eui;Lee, Min-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2011
  • In this study, the performance of composite safety barriers was evaluated through computer simulation. A composite safety barrier of SB4 grade was modeled. The MAT58 material model provided by LS-DYNA software was used to model composite material. The performance of composite material varies according to fiber, resin type, and fiber direction. Polyurethane resin and glass fiber were used. The performance of three different stacking designs was evaluated by carrying out vehicle impact simulation. The performance evaluation based on the vehicle crash manual includes the structural strength performance, the passenger protection performance, the vehicle behavior after crash, scattering of the guardrail. As the result of the finite element analysis, the barrier composed of the more transverse direction fibers shows the better performance on the impact simulation.

A Study on Performance Improvements about Duct of Smoke Control System Combined with Air-Conditioning Equipment (공기조화설비 겸용 제연설비 덕트의 성능개선을 위한 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 2021
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Analysis of 3D Laser Scanner Input Performance in Structual Safety Diagnosis (구조안전진단에서의 3D 레이저 스캐너 투입 성과 분석)

  • Seong, Do-Yun;Baek, In-Soo;Kim, Jea-Jun;Ham, Nam-Hyuk
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.34-44
    • /
    • 2021
  • This study quantitatively analyzes the work performance of the structural safety diagnosis team that diagnoses pipe racks. To this end, a method for evaluating the performance of the structural safety diagnosis team using the queuing model was proposed. For verification, the case of applying the existing method and the method of introducing a 3D laser scanner for one site was used. The period, number of people, and initial investment cost of each project were collected through interviews with case project experts. As a result of analyzing the performance of the structural safety diagnosis team using the queuing model, it was possible to confirm the probability of delay in the work of each project and the amount of delayed work. Through this, the cost (standby cost) when the project was delayed was analyzed. Finally, economic analysis was conducted in consideration of the waiting cost, labor cost, and initial investment cost. The results of this study can be used to decide whether to introduce 3D laser scanners.

Study on Safety Evaluation of Traditional Wooden Structure (전통목조의 안정성 평가에 대한 연구)

  • Kim Nam-Hee;Hong Sung-Gul;Bae Byoung-Sun;Jung Sung-Jin;Lee Young-Wook;Hwang Jong-Kuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.413-420
    • /
    • 2006
  • There are many Korean traditional wooden structures that have resisted successfully over more than several hundred years. However, their structural behavior is not known in engineering context yet. It is then difficult to predict how they behave against various loadings if they face. This paper is to attempt to investigate structural performance of the wooden structures using fuzzy concepts rather than definitely defined engineering formula. The fuzzy synthetic theory to a scoring method enables us to draw a representative and comprehensive value from individual quantity.

  • PDF

Development of a Structural Safety Evaluation System for Stone Voussoir Arch Bridges (석조 홍예아치교의 구조적 안정성 평가시스템 개발)

  • Kim, Nam-Hee;Koh, Hyun-Moo;Hong, Sung-Gul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Masonry structures that are very strong in compression fail due to the instability of structural shape of geometry rather than the material stress limit. Considering such structural behavior, the use of the limit theorem that focuses on structural collapse mechanisms is more appropriate for the evaluation of the structural safety of stone voussoir arch bridges. This paper is to investigate structural performance of the stone arch bridges constructed using dry construction method in Korea based on the limit theorem and to exploit the result to develop a system for an structural safety margin. It is expected that this study will help us understand structural behavior of stone voussoir arch bridges in Korea. Also, it will provide a guideline to make engineering decision from the viewpoint of the maintenance of cultural heritages.

Suggestion of Priority Decision Method for Performance Evaluation Based on Risk Index for Small and Medium Sized Bridges (위험도 지수 기반 중소규모 교량 성능평가 우선순위 결정 방안 제안)

  • Lee, Hee-Hyun;Shin, Byoung-Gil;Lee, Yeong-Il;Kim, Young-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.70-76
    • /
    • 2019
  • This paper presents a methodology for priority decision of performance evaluation of small-and-medium-sized highway bridges. This methodology could be used for establishing a maintenance strategy of those bridges which are not liable to the law of the Special Act on the Safety Control and Maintenance of Establishments and are thought laid under blind spot. The risk index are calculated considering vulnerability and social influence, then the bridges are classified as three types, one requiring immediate evaluation, the other one requiring evaluation within next year, and the third one observing, according to the index. The suggested method was applied to a small bridge under service and its field applicability verified. From this study, it was judged that this methodology could be used appropriately for establishing maintenance strategy and saving the maintenance budget.

Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation (유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

Seismic performance evaluation of school buildings in Turkey

  • Inel, Mehmet;Ozmen, Hayri Baytan;Bilgin, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.535-558
    • /
    • 2008
  • This study evaluates seismic performance of the school buildings with the selected template designs in Turkey considering nonlinear behavior of reinforced concrete components. Six school buildings with template designs were selected to represent major percentage of school buildings in medium-size cities located in high seismic region of Turkey. Selection of template designed buildings and material properties were based on field investigation on government owned school buildings in several cities in western part of Turkey. Capacity curves of investigated buildings were determined by pushover analyses conducted in two principal directions. The inelastic dynamic characteristics were represented by equivalent single-degree-of-freedom (SDOF) systems and their seismic displacement demands were calculated under selected ground motions. Seismic performance evaluation was carried out in accordance with recently published Turkish Earthquake Code that has similarities with FEMA-356 guidelines. Reasons of building damages in past earthquakes are examined using the results of performance assessment of investigated buildings. The effects of material quality on seismic performance of school buildings were investigated. The detailed examination of capacity curves and performance evaluation identified deficiencies and possible solutions for template designs.

Analysis on the Current Evaluation items for the Performance-focused Management of the Concrete Retaining Wall (콘크리트 옹벽의 성능위주평가를 위한 평가항목 분석 연구)

  • Lee, Dong Yul;Seong, Joo Hyun;Jeong, Hae Sang;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.56-62
    • /
    • 2015
  • Recently, one of countermeasures against aging SOC infrastructures, performance-focused management including the serviceability, functionality, durability, and economics has been changed from the structural safety-focused evaluation has changed into The current inspection and diagnosis for the major SOC facilities in Korea has been carried out by the specific principle of details, and most of them checked by the visual inspection are focused on the repair and rehabilitation of the damaged structures, thus they are the preventive maintenance. However, the performance-focused management should be replaced for the effective and economic maintenance as wells as for the minimization of the damage. In this regard, this study the appropriacy of the current evaluation items about the concrete retaining wall, one of SOC infrastructures as the previous step forward the performance-focused management. In order to deduct the effective evaluation items in order, the entropy, analytic hierachy process (AHP), and promethee analysis were peformed and the results were compared and discussed.