• Title/Summary/Keyword: Evaluation of Settlement

Search Result 375, Processing Time 0.026 seconds

Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect (Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험)

  • 정형식;김도열;김정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.343-354
    • /
    • 2003
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20 and 25cm, on five different kinds of subsoil. Based on the analyzed results, this paper also proposes a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Until now, uneconomic constructions have been conducted because of unreasonable evaluation in estimating bearing capacity and settlement of footings from Plate-Load Test in fields. In the application of the formula proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

A Study on the Applicability of Settlement Evaluation for Sandy Layer by Elastic Theory (사질지반에서 탄성론에 의한 침하량 산정 적용성에 관한 연구)

  • Kim, Won-Cheul;Ahn, Chang-Yoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.61-70
    • /
    • 2004
  • N-value by the SPT is one of the key parameter for settlement evaluation. However, if the ground is firm, the usual N-value is not blow count of 30cm depth penetration. In such case, if N-value is more than 50 with 30cm penetration, the N-value 50 is applied for settlement analysis. Therefore, in this study, the modified method of N-value estimation is suggested and compared the settlement by Elastic Theory, and the measured field data by Plate Load Test. As the result of this study, it is shown that the settlement by Elastic Theory with the modified N-value is more accurate than settlement by usual N-value. The application of Elastic Theory for pure sand is also evaluated in this paper.

  • PDF

Evaluation of the Degree of Consolidation using Settlement and Excessive Pore Water Pressure (침하량과 간극수압에 의한 압밀도의 평가(지반공학))

  • 이달원;임성훈;윤제식;김지문
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.444-450
    • /
    • 2000
  • This study was performed to analyze the degree of consolidation by the dissipation of excessive pore water pressure and final settlement prediction methods of the very soft clay. Hyperbolic method, Asaoka method and curve fitting method were used to compute the degree of consolidation. The degree of consolidation with excessive pore water pressure were used to compute, which considered the dissipation time with embankment construction. The degree of consolidation that was obtained by the peak excessive pore water pressure was less than in the case of the dissipation excessive pore water pressure. And, the degree of consolidation by the total settlement was nearly the same value that of layer settlement. The degree of consolidation that was obtained by excessive pore water pressure was larger than in the case of the settlement.

  • PDF

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (II) (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (II))

  • Kim, Dae-Sang;Park, Seong-Yong;Shin, Min-Ho;Lee, Hyeon-Jung;Kim, Hyun-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.457-462
    • /
    • 2007
  • An application of concrete track is being activity processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance fee, but is very difficult to control the settlement of ground and embankment consisting of substructure of concrete track below the allowable settlement level. This is the reason why the measurement and evaluation of both ground and embankment settlement before the installation of the concrete track is very important. One ground, a lower subgrade, and five surface settlements are measured to understand the settlement behavior of ground and embankment settlement. The period to measure settlements was more than 1 year after the completion of embankment. In this test site, ground settlement was over during the construction of embankment, but the embankment settlement are being continuously proceeded after the completion of embankment. The settlement velocity gradually is slowing down as time goes by. This paper also analysed the reasons of abrupt settlement increase and concluded that the rainfall was one of the important reason to increase settlement rate.

Evaluation of Consolidation Settlement by Gaussian Quadrature (가우스 적분법을 이용한 압밀침하량 산정)

  • Yune, Chan-Young;Jung, Young-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.188-194
    • /
    • 2009
  • Consolidation settlement, a crucial parameter in geotechnical design of soft ground, has not been computed in a unique way due to different computation methods in practice. To improve computational error in calculating consolidation settlement, a number of researches has been attempted. Conventional 1-dimensional consolidation theory assumes the center of the clay layer as the representative point to obtain effective stress in calculation, which could resort to erroneous results. To calculate exact solutions considering initial distribution of effective stress, diving a stratum into multi-layers could resort to wasting time and effort. In the study, a novel methodology for calculating consolidation settlement via Guassian quadrature is developed. The method generally is capable of computing settlements in any case of the stress conditions encountered in fields.

  • PDF

The evaluation of applicability for several final settlement prediction methods to field settlement management by measurement results carried on embankment on the soft clays (계측결과를 이용한 연약지반상 성토시의 최종침하량예측기법들의 현장적용성)

  • Kim, Jong-Ryeol;Gang, Hee-Bog;Choi, Ju-Myoung;Hwang, Soung-Won;Kim, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.924-931
    • /
    • 2005
  • In this study, we intended to compare and examine several settlement management methods by analyzing measurement results of a site of the industrial complex at ${\bigcirc}{\bigcirc}$ province. We predicted and analyzed the amount of final settlement by using generally used final settlement methods as like Hyperbola method, Hoshino methods and Asaoka method. And then, We compared the predicted results with that of measurement. On the basis of comparison of the three methods, Hyperbola method was the most convenient and accurate method of the three methods and if a sufficient time was given enough after embankment construction, the use of Hoshino method was possible. In the case of the Asaoka methods, it was possible to know that it had an approaching tendency to the measured one with increasing time interval spent on analysis. Therefore, in order to predict settlement behavior more accurately it is needed to understand their advantages and shortcomings sufficiently and pay attention to application to the real site.

  • PDF

Prediction Technique of Vibration Induced Settlement -On the Basis of Case Studies (지반 진동에 의한 주변침하 예측기법 사례 연구를 중심으로)

  • 김동수;이진선
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 1996
  • Man-made vibrations from traffic and construction activities are important because they may cause damage to structures. The current literature provides that damages in the urban areas were not caused by direct transmission of vibration, but rather through subsequent settlement caused by soil densification. In this paper. prediction technique of ground borne vibration induced settlement was introduced on the basis of case studies. In situ application technique of the settlement prediction model developed in laboratary was described, and the predicted settlement was compared with the measured settlement from case studies. The settlement from case studies hlatched well with the settlement calculated from the model. The parametric studies of settlement in typical urban site conditions were performed to determine the sensitive parameters and to develop reliable vibration monitoring and interpretation schemes. These demonstrated the potential usefulness of the model for the evaluation and prediction of the vibration induced in-situ settlement of sands.

  • PDF

Experimental Study on Soft Ground with DCM Column (DCM 타설 지반에 관한 실내모형실험)

  • Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2020
  • This study described the result of laboratory model tests, in order to compare the improvement effect of the DCM column installed on the soft ground according to DCM column type. In the laboratory model test, the non-reinforced type and the 3 types of DCM column were applied, and the behavior (settlement, lateral flow) of soft ground was evaluated under the surcharge load condition for each type. The settlement evaluation result showed that the settlement of soft ground without DCM column occurred rapidly under the low load condition, but the settlement of the soft ground with the DCM column had relatively small settlement. The evaluation result of lateral flow in the soft ground showed that the soft ground with DCM column had lower lateral displacement than the soft ground without DCM column. Especially, the lateral displacement under the same load condition decreased in the order of pile type, wall type, and grid type. Therefore, it confirmed that the improvement effect of soft ground was excellent when the DCM of grid type was applied for settlement and lateral flow.

Test and analysis of settlement pattern of trackbed during pipe roof excavation (각관 추진 굴착시 궤도노반의 침하경향 실험분석)

  • Jung, Kwan-Dong;Eum, Ki-Young;Choi, Chan-Yong;Jo, Su-Ik;Hwang, In-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.895-902
    • /
    • 2010
  • The method in a bid to make better use of limited urban space amidst increasingly expanding urban area have been attempted in various ways. Efficient using underground space is one of the examples. The pipe roof and excavation for underground crossing implemented in this study was the part of evaluation of such attempt. However, the pipe roof method for underground crossing may cause the ground surface to be uplifted or settled down, having effect on structure above the ground. Thus in this study, a laboratory model test designed to evaluate the effect on surface during implementing pipe roof and excavation was carried out. The ground displacement during pipe roof advancing and excavation is usually occurred in a radial shape but as the study focused on trackbed, the evaluation included ground settlement only. Thus, appropriately-scaled model was selected considering domestic geological characteristics and operation characteristics of traditional and high-speed rail trains and the qualitative evaluation of displacement was carried out with a certain ground loss depending on excavation after categorizing trackbed settlement pattern depending on depth of top soil.

  • PDF

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.