• 제목/요약/키워드: Evaluation of Aerodynamic Performance

검색결과 63건 처리시간 0.026초

솔라윙 시스템의 풍진동 특성 평가 (Evaluation of Aerodynamic Performance of Solar Wing System)

  • 김용철;윤성원
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.65-72
    • /
    • 2016
  • Aerodynamic performance of solar wing system has been evaluated through wind tunnel test. The test model has 12 panels, each supported by 2 cables. The panels were installed horizontally flat, and gaps between panels were set constant. Sag ratios of 2% and 5%, and wind directions between $0^{\circ}$ and $90^{\circ}$ were considered. Mass of test model was determined considering the mass of full scale model, and Froude number and Elastic parameter were satisfied by adjusting the mean wind speed. From the wind tunnel test, it was found that the aerodynamic performance of the solar wing system is very dependent on the wind directions and sag ratios. When the sag was 2%, the fluctuating displacements between the wind directions of $0^{\circ}$ and $30^{\circ}$ increase proportionally to the square of the mean wind speed, implying buffeting-like vibration and a sudden increase in fluctuating displacement was found at large mean wind speed for the wind directions larger than $40^{\circ}$. When the wind direction was larger than $60^{\circ}$, a sudden increase was found both at low and large mean wind speed. When the sag ratio is 5%, distribution of mean displacements is different from that of sag ratio of 2%, and the fluctuating displacements show very different trend from that of sag ratio of 2%.

월드컵 공인구와 한국 축구 공인구 사이의 기초 공력특성 비교 (Comparison of the basic Aerodynamics between the World Cup Official Ball and Korean Soccer Balls)

  • Sungchan Hong
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.63-70
    • /
    • 2024
  • Objective: This study aims to compare the basic aerodynamic characteristics of the official Qatar World Cup soccer ball with those of the official Korean soccer balls. Method: In this study, wind tunnel experiments were conducted to compare the fundamental aerodynamic properties of two commonly used domestic soccer balls, the Star and Nassau, with the Al Rihla, the official ball of the 2022 Qatar World Cup. Results: The findings revealed that the Nassau soccer ball exhibited changes in aerodynamic characteristics depending on its orientation, particularly at low speeds (below 15 m/s), while the Al Rihla showed variations in aerodynamic characteristics at medium to high speeds (15 m/s to 35 m/s) based on its orientation. Furthermore, the results of lift and side force variations indicated that the Star soccer ball exhibited larger changes compared to other soccer balls, suggesting that it may exhibit the most irregular flight path during strong shots (around 30 m/s or approximately 100 km/h). However, there were no differences in aerodynamics observed among the soccer balls in the medium-speed range (20~25 m/s). Conclusion: The comparison of aerodynamics between the Korean soccer balls and the most recently used World Cup official ball showed that, while the Korean balls exhibited slightly greater changes in lift and side forces compared to the World Cup ball, there were no significant differences in most of the aerodynamic characteristics.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Evaluation of the Aerodynamic Performance of A Hybrid Mesh Based Finite Volume Code

  • ZHENG, H.W.
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.40-43
    • /
    • 2015
  • A hybrid mesh based finite volume compressible flow code (PolySim) has been developed recently. Instead of the simple average method for the gradients of variables at each face, the volume average is applied for the calculation of the viscous flux. What is more, an improved Green Gauss method for the calculation of the gradient is also presented. These two techniques will improve both the accuracy and robustness of the code. The aerodynamic performance of this in-house cell centered code is examined by several widely-used bench-mark test cases. These cases include flows over flat plate and RAE 2822 etc. The comparisons on results between calculation and experiment are conducted. They show that the code can produce good numerical results which agree well with the corresponding experiment data.

유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가 (Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects)

  • 김동현;김유성
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.72-78
    • /
    • 2008
  • 본 연구에서는 블레이드 구조 변형 효과를 고려하여 스테이터-로터 상호간섭 케스케이드 모델의 성능평가를 위한 유체-구조 연계해석 시스템을 개발하였다. 고정된 스테이터와 회전하는 로터는 상호간섭 영향이 유동해석에 고려되었으며, 레이놀즈-평균화 난류 방정식인 Spalart-Allmaras 모델과 k-ω SST 난류 모델이 압축성 유동박리 효과를 고려한 유동하중을 예측하기 위해 적용되었다. 정적인 유체-구조 연계해석과 수렴율 증진을 효과적으로 수행하기 위하여 큰 인공 감쇠를 가지는 연계 Newmark 시간적분 기법을 적용하였다. 수치실험을 통해 탄성축 위치에 따른 구조변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조변형 효과가 고려된 경우 일반적인 강체 블레이드 모델에 대한 성능예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력탄성학적 영향을 고찰하였다.

날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발 (Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT)

  • 모장오;김범석;김만응;최영도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

대기 에어로졸 측정용 3단 임팩터의 설계 및 성능평가 (Design and Performance Evaluation of a Three Stage Impactor)

  • 지준호;배귀남;황정호
    • 한국대기환경학회지
    • /
    • 제17권6호
    • /
    • pp.441-450
    • /
    • 2001
  • A three stage impactor with the cutoff diameters of 1, 2.5, and 10$\mu\textrm{m}$ in aerodynamic diameter was developed and tested. The gravimetric method and the particle counting method were utilized to evaluate the collection performance of each stage. A vibrating orifice aerosol generator was employed to generate monodisperse test aerosols larger that 2$\mu\textrm{m}$ in diameter. Polystyrene latex (PSL) particles smaller than 2$\mu\textrm{m}$ in diameter were generated by an atomizer and the particle number concentration was measured by an Aerodynamic Particle Sizer Spectrometer. The experimental cutoff diameters obtained from the particle collection efficiency curves are in good agreement with the designed values. The square roots of Stokes number at 50% collection efficiency for stage 1, 2, and 3 are 0.42, 0.48, and 0.45, respectively. Effects of the particle bounce and the impaction plate on the collection efficiency were investigated. The collection efficiency curves including effect of the particle bounce were also compared with those of the MOUDI cascade impactor.

  • PDF

서브마이크론 입자 측정용 저압 임팩터의 설계 및 성능평가 (Design and Performance Evaluation of a Low Pressure Impactor for Sampling Submicron Aerosols)

  • 지준호;조명훈;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.349-358
    • /
    • 2004
  • A low pressure impactor is an impaction device to separate airborne particles into aerodynamic size classes at low pressure condition. We designed a two-stage low-pressure impactor to classify submicron sized environmental aerosols. Performance evaluation was carried out for stages 1 and 2 by using an electrical method. Monodisperse liquid dioctyl sebacate (DOS) particles were generated using evaporation-condensation process followed by electrostatic classification using a DMA (differential mobility analyzer). The test particles were in the range of 0.08∼0.8$\mu\textrm{m}$. For the evaluation of the impactor we used two electrometers; one was connected to the impaction plate of the impactor and the other was to the Faraday cage used as a backup filter. The effect of polydispersity of test aerosols on the performance was investigated. The results showed that the experimental 50-% cutoff diameters at each impactor's operation pressure were 0.53 and 0.187$\mu\textrm{m}$ for stages 1 and stage 2, respectively. The effects of operation pressure on the cutoff diameter and the steepness of collection efficiency curves were also investigated.

스팀터빈의 공력성능 평가를 위한 공기 상사실험 (Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine)

  • 임병준;이은석;양수석;이익형;김영상;권기범
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가 (Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF