• Title/Summary/Keyword: Evaluation Sheet

Search Result 510, Processing Time 0.027 seconds

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

Evaluation of Electrochemical Stability and Performance of Graphite Sheets as Current Collectors for Lead Acid Battery (납축전지 전류집전체로서 그라파이트 시트의 전기화학적 안정성과 방전성능 평가)

  • An, Sang-Yong;Kim, Eung-Jin;Yoon, Youn-Saup;Kim, Hee-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.128-131
    • /
    • 2010
  • Graphite sheet electro-deposited with lead was evaluated as a possible candidate for current collectors of lead acid batteries. Cyclic voltammetry was performed on the materials to evaluate the electrochemical properties. The graphite sheet electro-deposited with lead is electrochemically stable in the cathodic potential sweep. However, in the anodic potential sweep, the graphite sheet electro-deposited with lead is electrochemically unstable due to the oxygen evolution and the intercalation of sulfuric acid. Lead acid batteries were prepared by using a graphite sheet and a cast grid as current collectors for anode and performance test using those batteries was carried out. A lead acid battery with graphite sheets showed higher capacity and energy density than a conventional lead acid battery with cast grid.

Thermal Performance Evaluation of the Window Systems with Air-bubble Sheets (단열시트(뽁뽁이)의 종류 및 부착위치에 따른 창호의 단열성능 평가)

  • Hwang, Je;Jeong, Ah Hee;Jeon, Byung Heoun;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.463-467
    • /
    • 2015
  • The air-bubble sheet has been widely used to wrap fragile products for long-distance transportation. The further usage of the air-bubble sheet as a thermal-insulation material for the reduction of the thermal conductivities of window systems has occurred because of its low price, in addition to its thermal-conductivity properties. In this study, the thermal performances of a variety of commercial air-bubble sheets according to various applications were evaluated. The experiments were performed with single-glazed and double-glazed windows and three types of air-bubble sheets of different air volumes. U-values are used and were calculated for the determination of the thermal performances that are based on the KS F 2278. The maximum decrease of the U-value was measured as 1.092 when a sheet was attached onto the frame of single-glazed window. The square-like air-bubble sheet that contains the largest air volume shows the highest thermal-resistance value. Double layers of the air-bubble sheets show better performances than those of the single layers on both sides of the windows.

Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet (FRP 시트로 보강된 철근콘크리트 벽체의 방호성능 평가)

  • Lee, Kun-Ho;Kim, Jae-Min;Kim, Jae Hyun;Lee, Sang-Hoon;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.151-160
    • /
    • 2022
  • Owing to the recent increase in the frequency of explosion accidents, blast resistive design has garnered attention to reduce the damage of important structural elements. However, domestic research on the blast resistive structures is still insufficient, and domestic design guideline against blast loads are not documented yet. In this study, a numerical study on the RC blast resistive walls, where the test variable was the presence of FRP sheet, was performed using LS-DYNA program. Based on the numerical results, displacement-time hysteretic curve, pressure-impulse diagram, and fragility curve of the test specimens were derived. It was shown that the FRP sheet strengthening method is efficient to improve the blast resistive performance of the RC wall. Also, the strengthening effect of FRP sheet on the RC wall was stronger when the magnitude of the blast load was greater.

Strengthening Effect Evaluation Technique of R/C Beams using the Vibration Test (진동시험을 통한 R/C Beam의 보강효과 검증기법)

  • 심종성;유태석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.255-260
    • /
    • 1994
  • This study suggests a strengthening effect evaluation technique of reinforced concrete beams using the vibration test. To evaluate the strengthening effect of R/C beams, Strengthening Factor(Sf) was suggested. Using the value of Sf, 20 beams were evaluated. According to these results the effects of R/C beams strengthened by steel plate is superior than those of R/C beams strengthened by carbon fiber sheet.

  • PDF

A Study on the Evaluation of Uncertainty of Rockwell Hardness C Scale According to the Korean Industrial Standards(KS) (한국산업표준(KS)에 따른 로크웰 경도 시험기의 불확도 산정에 관한 연구)

  • Bahng, G.W.;Tak, Nae-Hyung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.163-169
    • /
    • 2000
  • Recently, uncertainty of hardeness became a major concem for the people working on the laboratory evaluation and accreditation. It is required to indicate uncertainty of hardness tester on the report after calibration. In addition to this, uncertainty of certified hardness reference block is also required to indicate on the certification sheet. Method on the evaluation of uncertainty in hardness measurement is agreed only recently for Rockwell hardness C scale. In this paper, a preliminary calculation of uncertainty based on type B evaluation has been made for hardness testers which satisfies the requirements of Korean Standards. It was found that the tolerance limit of mean value specified in KS should be increased to be compatible with the calculated uncertainty.

  • PDF

Relationship between fatigue resistance and fracture behavior of the carbon fiber sheet and carbon fiber strand sheet reinforced RC slabs (Carbon fiber sheet 및 carbon fiber strand sheet 접착보강한 RC 상판의 내피로성과 파괴거동과의 상관관계)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho;Kim, Do Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.294-298
    • /
    • 2015
  • According to the results of "Highway Bridges Long Life Repair Plan." The most serious damage to RC slabs is caused by fatigue deterioration, which results from the driving loads of large-sized vehicles, and aging of materials. In response to this, adhesion reinforcement using carbon fiber sheet is being adopted. In addition, carbon fiber strand sheet that holds the same material characteristics as CFS, but has superior workability, has been developed as a new reinforcement material. However, almost no studies have been conducted on CFSS in relation to fatigue resistance evaluation through fatigue tests under running wheel loads, with the exception of a few by some organizations. Therefore, in this study, specimens with front CFS adhesion reinforcement on the bottom surface of the RC slab and specimens with grid-type CFSS reinforcement were manufactured. Then, fatigue tests under running wheel loads were conducted, and thus fatigue resistance was evaluated using the specimens.

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure (경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가)

  • Kim, Jang-Ho Jay;Park, Jeong-Cheon;Lee, Sang-Won;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.511-520
    • /
    • 2011
  • Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.

A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates (금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구)

  • Yu, Byeong-Seok;Kim, Jeong-Hun;Kim, Dong-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.