DOI QR코드

DOI QR Code

Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet

FRP 시트로 보강된 철근콘크리트 벽체의 방호성능 평가

  • 이건호 (서울시립대학교, 건축공학과 스마트시티융합전공) ;
  • 김재민 (서울시립대학교, 건축공학과 스마트시티융합전공) ;
  • 김재현 (서울시립대학교, 건축공학과) ;
  • 이상훈 (서울시립대학교, 건축공학과 스마트시티융합전공) ;
  • 김강수 (서울시립대학교, 건축공학과 스마트시티융합전공)
  • Received : 2022.09.26
  • Accepted : 2022.10.21
  • Published : 2022.10.30

Abstract

Owing to the recent increase in the frequency of explosion accidents, blast resistive design has garnered attention to reduce the damage of important structural elements. However, domestic research on the blast resistive structures is still insufficient, and domestic design guideline against blast loads are not documented yet. In this study, a numerical study on the RC blast resistive walls, where the test variable was the presence of FRP sheet, was performed using LS-DYNA program. Based on the numerical results, displacement-time hysteretic curve, pressure-impulse diagram, and fragility curve of the test specimens were derived. It was shown that the FRP sheet strengthening method is efficient to improve the blast resistive performance of the RC wall. Also, the strengthening effect of FRP sheet on the RC wall was stronger when the magnitude of the blast load was greater.

최근 폭발사고의 빈도수가 증가함에 따라 주요 구조부재의 손상을 저감시킬 수 있는 방호 구조물 설계에 대한 관심이 높아지고 있다. 그러나, 방호 구조물의 방호성능에 대한 국내 연구는 아직 미진한 실정이며, 아직 설계 가이드라인도 충분히 갖추어지지 못한 실정이다. 따라서, 본 연구에서는 FRP 시트 보강유무를 변수로 하여 RC 방호벽에 대한 해석적 연구를 수행하였다. 해석은 LS-DYNA 프로그램을 활용하여 수행되었으며, 해석을 통해 RC 방호벽과 FRP 시트로 보강된 RC 방호벽의 변위-시간이력곡선, 압력-충격량 도표, 취약도 곡선을 도출하였다. FRP 시트 보강방법은 RC 방호벽의 방호성능을 향상시키는데 매우 효율적인 것으로 나타났다. 또한, 폭발하중의 크기가 클수록 RC 방호벽에 대한 FRP 시트의 보강효과는 높아지는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22RMPP-C163162-02).

References

  1. Zhang, C., Gholipour, G., and Mousavi, A. A. (2020). Blast loads induced responses of RC structural members: State-of-the-art review, Composites Part B: Engineering, 195, 108066. https://doi.org/10.1016/j.compositesb.2020.108066
  2. Algassem, O., Li, Y., and Aoude, H. (2019). Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads, Engineering Structures, 199, 109611. https://doi.org/10.1016/j.engstruct.2019.109611
  3. Shin, J., and Jeon, J. S. (2019). Retrofit scheme of FRP jacketing system for blast damage mitigation of non-ductile RC building frames, Composite Structures, 228, 111328. https://doi.org/10.1016/j.compstruct.2019.111328
  4. Hu, Y., Chen, L., Fang, Q., Kong, X., Shi, Y., and Cui, J. (2021). Study of CFRP retrofitted RC column under close-in explosion. Engineering Structures, 227, 111431. https://doi.org/10.1016/j.engstruct.2020.111431
  5. Luccioni, B., Isla, F., Codina, R., Ambrosini, D., Zerbino, R., Giaccio, G., and Torrijos, M. C. (2017). Effect of steel fibers on static and blast response of high strength concrete, International Journal of Impact Engineering, 107, 23-37. https://doi.org/10.1016/j.ijimpeng.2017.04.027
  6. Lee, I. C., Kim, H. S., Nam, J. S., Kim, S. B., and Kim, G. Y. (2013). Evaluation of Protective Performance of Fiber Reinforced Concrete T-Wall, Journal of the Korea Institute of Buliding Construction, 13(5), 465-473. https://doi.org/10.5345/JKIBC.2013.13.5.465
  7. Ha, J. H., Yi, N. H., Kim, S. B., Chol, J. K., and Kim, J. H. (2010). Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting, Journal of the Korea Concrete Institute, 22(1), 93-102. https://doi.org/10.4334/JKCI.2010.22.1.093
  8. Byun, K. J., Kim, H. J., and Nam, J. W. (2011). Blast Load and Design of Protective Structures, Journal of the Korea Concrete Institute, 23(2), 16-22.
  9. Hong, J. K. (2018). Understanding of Blast Resistant Design and Performance Evaluation of a Building designed for conventional Loads, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 83-90. https://doi.org/10.11112/JKSMI.2018.22.4.083
  10. Lee, S. H., and Kim, H. S. (2022). Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis, J. Comput. Struct. Eng. Inst. Korea, 35(3), 141. https://doi.org/10.7734/COSEIK.2022.35.3.141
  11. Stewart, M. G., and Netherton, M. D. (2015). Reliability-based design load factors for explosive blast loading, Journal of Performance of Constructed Facilities, 29(5), B4014010. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000709
  12. U.S. Department of Defense. (2008). Structures to resist the effects of accidental explosions. UFC-3-340-02, Washington DC, USA.
  13. Korean Occupational Safety Health Agency. (2012). KOSHA GUIDE D-65-2018, KOSHA.
  14. Jeon, D. J., and Han, S. E. (2016). A Suggestion of Simplified Load Formula for Blast Analysis, Journal of the Computational Structural Engineering Institute of Korea, 29(1), 67-75. https://doi.org/10.7734/COSEIK.2016.29.1.67
  15. Kingery, C. N., and Bulmash, G. (1984). Airblast parameters from TNT spherical air burst and hemispherical surface burst. US Army Armament and Development Center, Ballistic Research Laboratory.
  16. Swisdak Jr, M. M. (1994). Simplified Kingery airblast calculations. NAVAL SURFACE WARFARE CENTER INDIAN HEAD DIV MD.
  17. Formby, S. A., and Wharton, R. K. (1996). Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level, Journal of Hazardous materials, 50(2-3), 183-198. https://doi.org/10.1016/0304-3894(96)01791-8
  18. Netherton, M. D., and Stewart, M. G. (2010). Blast load variability and accuracy of blast load prediction models, International Journal of Protective Structures, 1(4), 543-570. https://doi.org/10.1260/2041-4196.1.4.543
  19. Schwer, L. E., and Malvar, L. J. (2005). Simplified concrete modeling with *MAT_CONCRET_DAMAGE_REL3. LS-DYNA Anwenderforum, Bamberg.
  20. Bischoff, P. H., and Perry, S. H. (1991). Compressive behaviour of concrete at high strain rates, Materials and Structures, 24, 425-450. https://doi.org/10.1007/BF02472016
  21. Cho, H. W., Lee, J. H., Min, J. Y., Park, J. J., and Moon, J. H. (2015). Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis, Journal of Korea Institute for Structural Maintenance and Inspection, 19(4), 83-91. https://doi.org/10.11112/JKSMI.2015.19.4.083
  22. Malvar, L. J., and Ross, C. A. (1998). Review of Strain Rate Effectes for Concrete in Tension, ACI Materials Journal, 95(6), 735-739.
  23. Malvar, L. J. (1998). Review of Static and Dynamic Properties of Steel Reinforcing Bars, ACI Materials Journal, 95(6), 609-616.
  24. Harding, J., and L. Mo Welsh. (1983), A tensile testing technique for fibre-reinforced composites at impact rates of strain. Journal of Materials Science, 18(6), 1810-1826. https://doi.org/10.1007/BF00542078
  25. Taniguchi, N., Nishiwaki, T., and Kawada, H. (2012). Tensile strength of unidirectional CFRP laminate under high strain rate. Advanced Composite Materials, 16(2), 167-180. https://doi.org/10.1163/156855107780918937
  26. Hou, J. P., and Ruiz, C. (2000) Measurement of the properties of woven CFRP T300/914 at different strain ratess, Composites Science and Technology, 60(15), 2829-2834. https://doi.org/10.1016/S0266-3538(00)00151-2
  27. CEB, (1993), CEP-FIP Model Code 1990, Redwood Books, Trobridge, Wiltshire, UK.
  28. Tanapornraweekit, G., Haritos, N., and Mendis, P. (2011). Behavior of FRP-RC Slabs under Multiple Independent Air Blasts, Journal of Performance of Constructed Facilities, 25(5), 433-440. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000191