• Title/Summary/Keyword: Eutrophication model

Search Result 108, Processing Time 0.023 seconds

Photosynthesis-Irradiance Relationship and Primary Production of Phytoplankton in Lake Gocheonam

  • Jung, Min-Kyung;Lee, Ok-Hee;Cho, Kyung-Je
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.524-531
    • /
    • 2004
  • Photosynthetic activities and primary production of phytoplankton were investigated in Lake Gocheonam from October 1999 to August 2000. As an estuary lake with a barrage in the Southwestern coast of the Korean peninsula, the lake has received more attention after it became known as the habitat of large population of rare and endangered bird- Baikal Teal. As the lake had high algal biomass ranging from $20\mu{g}\;chl-aL^{-1}\;to\;125\mu{g}\;chl-aL^{-1}$ in average values and rich eutrophication indicator species, the freshwaters were in a very productive or hypertrophic state. In the results obtained from the phytoplankton incubation in the laboratory, the maximum photosynthetic rate $(P_{max})$ varied according to seasons and sampling stations. Photo- synthetic activities were higher during the warm season than the cold seasons and the serial order of $P_{max}$ was August dominated with Microcystis, April with Chlamydomonas and Nitzschia, October with Chlamydomonas and January with Stephanodiscus. The water of the lake was persistently turbid throughout the year due to strong winds from the adjacent sea. Despite the water turbidity, the phytoplankton productions estimated from a mathematical model had very broad range from 18mg C $m^{-2}day^{-1}\;to\;10,300mg\;C\;m^{-2}day^{-1}$.

Water Quality Improvement System Using High Voltage Electric Field with Self-Generation System (자가 발전 시스템을 갖춘 고전압 전기장 수질개선 장치 개발)

  • Kang, Rae-Yun;Kang, Chul-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2015
  • The occurrence of algae caused by eutrophication of fresh water is a pollution source to destroy the aquatic environment. When the high voltage electric field is applied in the water, When a high voltage is applied to the electric field in the water, the algae can be broken the balance of cell membranes, and is dead. In this paper, we develop a water quality improvement system for generating an electric field having a higher energy than the zeta potential when a high voltage is applied to 4,000V. To ensure the mobility of the water quality improvement system, we designed the PV generation system using the optimal size technique that is based on the model of power lack ratio. By evaluating the output characteristics of the water quality improvement system, power generation characteristics of the PV generation system, and battery charging characteristics, we can show that the proposed system can be applicable to the water quality improvement system inhibiting the growth rate of the algae in the fresh water.

An Integrated Environmental Impact Assessment Model using FEMWASP and ArcView (FEMWASP 모형 및 ArcView를 결합한 통합적 환경영향평가 모형의 개발 및 적용)

  • Kim, Joon Hyun;Han, Young-Han;Choi, Yoon-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.65-70
    • /
    • 1998
  • An integrated EIA tool was developed to analyze present and future environmental quality status of Youngwol Basin using ArcView and FEMWASP. All the input data and computational results were prepared and graphically displayed on the basis of ArcView. FEMWASP and ArcView were integrated using the command "system.execute" in script of Avenue. Modeling items were inserted in the GUI of ArcView. The modeling result showed that the water quality of the proposed Yougwol Lake would be at the stage of eutrophication. The developed system can be applied to the water quality management of drinking water resources to set up the regulatory acts and project plan of governmental policy.

  • PDF

A Study on Phosphorus Removal Process Using Steel Industry By-Products(Slag) at Dynamic condition (동적(動的) 상태(狀態)에서 산업(産業) 폐기물(廢棄物)을 이용(利用)한 인(燐) 제거(除去)에 관한 연구(硏究))

  • Lee, Seung-Hwan;Ahn, Kyu-Hong;Yoon, Jong-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 1996
  • Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of the slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from BHP steel industry in Australia as adsorbing media indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristics S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical non-equilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted proportionally to the adsorbent's sorption capacity.

  • PDF

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.

Water Quality Modeling of Daechong Reservoir by WASP5/EUTR05 Model (WASP5에 의한 대청호 수질모델링)

  • Lee, Jong Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 1999
  • Lately water quality of Daechong Reservoir has become more eutrophicated than ever before and there has been much concern over especially the eutrophication of the embayment near Daejon and Chongju Water Intake Tower every summer. The purpose of this study is to predict the impact of change in the pollutant loading, flowrate, nitrogen and phosphorus release from sediment, SOD(sediment oxygen demand) upon the water quality of Daechong Reservoir by WASP5/EUTR05 in order to suggest water quality management alternatives. The data of Sep. 1995 were used for the calibration of the model and those of Sep. 1997 was for verification. The result of the modeling can be summarized as follows. 1. The 50% increase(decrease) of pollutant loading has caused that of T-N concentration by 0.10-0.14 mg/l, T-P concentration by 0.003-0.005 mg/l, and CBOD concentration by 0.16-0.18 mg/l. But the ratio of DO change by the change of pollutant loading was relatively small. 2. The sensitivity test of NH4 flux to T-N and that of P04 flux to T-P shows that T-N and T-P concentration were changed more in the epilimnion segments (SEG4, SEG5, SEG6, SEG7) than the other segments. As SOD increases, DO was predicted to decrease more especially in the hypolimnion (SEG9-SEG14). 3. As flowrate increase, the concentration of T-N, T-P, and CBOD were predicted to decrease, but DO concentration increased especially in the hypolimnion segments(SEG11, SEG12, SEG13, and SEG14). As the flowrate changed from $119m^3/sec$ to $50m^3/sec$, the concentration of T-N and CBOD in the hypolimnion was predicted to decrease.

  • PDF

Water Quality Modeling of Stratification Lake Using WASP6 Model (WASP6모형을 이용한 성층화 호소의 수질모의)

  • Lee, Wonho;Han, Yangsu;Kim, Jingeuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.57-65
    • /
    • 2006
  • In this study, WASP6 was used to predict the water quality of the reservoir and the lake. This can help the managers make the right choice of water quality policy. The results through studying are below. Raw pollutant load caused by the tourists in pollutant load of the study area takes 91.66% and 92.75% in total amount T-N, T-P. It showed high value when compared to raw pollutant load by land and stock farm and it seems that the main contamination is the population of tourists. From the result of the prediction model, BOD will increase about 1.5 times, T-N and T-P will be 1.5 times in 2012. It means that some counter plan is needed to reduce pollutant load. Enviroment grade of Suokjeong reserver is in I~II grade which is in good condition comparatively. However, the water contamination will be in poor as the year passes. when considering T-N T-P, which are the nutrients to control eutrophication, the concentrated administration about contamination sources is in urgent.

  • PDF

Phosphate removal using novel combined Fe-Mn-Si oxide adsorbent (Fe-Mn-Si 산화물을 이용한 인제거 흡착연구)

  • Maeng, Minsoo;Lee, Haegyun;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.631-639
    • /
    • 2013
  • The removal of phosphate from surface water is becoming increasingly vital to prevent problems such as eutrophication, particularly near urban areas. Recent requirements to reduce high concentrations of phosphate rely on physicochemical methods and adsorbents that must be effective even under strict conditions. The phosphate removal efficiencies of two adsorbents, Fe-Mn-Si oxide and Fe-Mn oxide, were investigated and the data used to compare kinetics and isotherm models. The maximum adsorption capacities of the two adsorbents were 47.8 and 35.5 mg-$PO{_4}^{3-}/g$, respectively. Adsorptions in both cases were highly pH dependent; i.e., when the pH increased from 3 to 9, the average adsorption capacities of the two adsorbents decreased approximately 32.7 % and 20.3 %, respectively. The Freundlich isotherm model fitted the adsorption of Fe-Mn-Si oxide more closely than did the Langmuir model. Additionally, anionic solutions decreased adsorption because of competition with the anions in the adsorbing phosphate. Although affected by the presence of competing anions or a humic substance, Fe-Mn-Si oxide has better adsorption capacity than Fe-Mn oxide.