• 제목/요약/키워드: Eutectic temperature

검색결과 297건 처리시간 0.023초

Evaluation for Al/Cu bonding by liquefaction after solid phase diffusion in the air

  • Kawakami, Hiroshi;Suzuki, Jippei;Fujiwara, Masanori;Nakajima, Junya;Kimura, Keiko
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.393-395
    • /
    • 2005
  • The bonding for Aluminum and Copper in the air is investigated in this study. This bonding method does not include the special process of removing aluminum oxide films. In case of this bending, each metal Is heated at bonding temperature where is above eutectic temperature of Al-Cu system and below melting point of Aluminum. The liquefaction around the bonding surface occurs after the diffusion at solid state of each metal. This phenomenon is predicted by the temperature range above eutectic temperature of Al-Cu equilibrium phase diagram.

  • PDF

High Optical Anisotropy Nematic Single Compounds and Mixtures

  • Gauza, Sebastian;Kula, Przemyslaw;Dabrowski, Roman;Sasnouski, Genadz;Lapanik, Valeri
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.2-5
    • /
    • 2012
  • We have designed, synthesized, and evaluated the physical properties of some high birefringence (${\Delta}n$) isothiocyanato biphenyl-bistolane liquid crystals. These compounds exhibit ${\Delta}n^-$ 0.4-0.7 at room temperature and wavelength $\lambda$=633 nm. Laterally substituted short alkyl chains and fluorine atom eliminate smectic phase and lower the melting temperature. The moderate melting temperature and very high clearing temperature make those compounds attractive for eutectic mixture formulation. Several mixtures based on those compounds were formulated and its physical properties evaluated.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구 (A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons)

  • 신동현;이승한;조태식;김일섭
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.186-190
    • /
    • 2023
  • We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.

저융점 원소의 첨가에 따른 Ti65Fe35 과공정 합금의 미세구조와 기계적 특성의 변화 (Evolution on Microstructure and Mechanical Property of Ti65Fe35 Hypereutectic Alloys by Adding Low Melting Temperature Elements)

  • 황윤중;홍성환;김정태;김영석;박혜진;김희진;정연범;이영훈;김기범
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.557-562
    • /
    • 2017
  • The microstructural evolution and modulation of mechanical properties were investigated for a $Ti_{65}Fe_{35}$ hypereutectic alloy by addition of $Bi_{53}In_{47}$ eutectic alloys. The microstructure of these alloys changed with the additional BiIn elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a ${\beta}$-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (${\beta}$-Ti/TiFe + ${\beta}$-Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2 %). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the ${\beta}$-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.

PTA법에 의한 스텔라이트 12 합금 육성층의 조직과 경도에 미치는 전류와 예열온도의 영향 (The Effect of Current and Preheat Temperature on Structure and Hardness of Stellite 12 Alloy Overlayer by PTA Process)

  • 정병호;김무길;김규덕;김민영;이성열
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.246-252
    • /
    • 2000
  • Stellite 12 alloy-powder was overlaid on 410 stainless steel valve seat using plasma transferred arc(PTA) process. Variation of characteristic of microstructure and hardness of deposit with current(90~150 A) and preheat temperature(R.T.~$400^{\circ}C$) was investigated. Important conclusion obtained are as follows; All welding conditions used produced a sound deposit layer with no defect in single pass welding. The maximum deposit had 4.0~4.8 mm in thickness and its bead width was increased with increase of current and preheat temperature. The deposit showed hypoeutectic microstruture, which was consisting of primary cobalt dendrite and networked $M_7C_3$ type eutectic carbides. The amount of eutectic carbides was decreased and its dendritic secondary arm spacing was increased with increase of current. Hardness of the deposit was decreased with increase of current. Preheat temperature up to $400^{\circ}C$, however, showed little influence on the hardness and microstructure. The hardness was also influenced by diluted Fe content near the interface in addition to microstructure and dendritic secondary arm spacing. Hot hardness at $500^{\circ}C$ showed higher than 300 HV.

  • PDF

초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성 (A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications)

  • 김성준;나혜성;한태교;이봉근;강정윤
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

TiFe 공정합금의 미소합금 첨가에 따른 미세구조 변화 및 기계적 물성 (Influence of Minor Element on Microstructure and Mechanical Properties of TiFe Ultrafine Eutectic Alloys)

  • 이찬호;조재혁;문상철;김정태;여은진;김기범
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.615-619
    • /
    • 2012
  • Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > $1{\mu}m$) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.

Sn-Zn 공정합금(共晶合金)의 응고속도(凝固速度)에 따른 조직(組織)과 기계적(機械的) 성질(性質)에 관한 연구(硏究) (A Study on the Morpholgies and Mechanical Properties of Sn-Zn Eutectic Alloys)

  • 이주형;이계완
    • 한국주조공학회지
    • /
    • 제5권4호
    • /
    • pp.258-270
    • /
    • 1985
  • The structures and mechanical properties of undirectionally solidified Sn-Zn eutectic alloys have been examined over the growth range 7mm/h to 6,000mm/h. The structures of unidirectionally solidified Sn-Zn eutectic alloys were primarily broken-lamellar at growth rates below 760mm/h and became fibrous at higher growth rates above that. At a growth rate 3,084mm/h the structures were fibrouse only. There is no dendrites at any growth rates, but occasionally ribbon-like morphologies were seen. The under cooling increased parabolically with growth rate increase. The hardness of specimes increased with growth rates increase but heat-treated specimen decreased after growth rates 760mm/h and became constant value. The effect of heat-treatment was good at lower growth rate. At room temperature tensile strength increased with growth rates up to R=990mm/h and then tensile strength became near-constant value. The effect of heat-treatment was well at lower growth rate.

  • PDF