• Title/Summary/Keyword: Eurocode 4

Search Result 133, Processing Time 0.027 seconds

Comparison of displacement capacity of reinforced concrete columns with seismic codes

  • Cansiz, Sinan;Aydemir, Cem;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.295-304
    • /
    • 2019
  • The lateral displacement or drift may be the cause of the damage in the reinforced concrete (RC) columns under the seismic load. In many regulations, lateral displacement was limited according to the properties of columns. The design displacement limits may be represented indirectly through the material strain limits and the mechanical properties of columns. EUROCODE-8 and FEMA356 calculate displacement limits by taking into account the mechanical properties of columns. However, Turkey Building Earthquake Code (TBEC) determine displacement limits by taking into account the material strain limits. The aim of this study is to assess the seismic design codes for RC columns through an experimental study. The estimates of seismic design codes have been compared with the experimental results. It is observed that the lateral displacement capacities of columns estimated according to some seismic codes are not in agreement with the experimental results. Also, it is observed that TBEC is conservative in the context of the performance indicator of RC columns, compared to EUROCODE-8 and FEMA356. Moreover, in this study, plastic hinge length and effective stiffness of test elements were investigated.

Load Bearing Capacity of CLT - Concrete Connections with Inclined Screws (경사못이 적용된 CLT-콘크리트 접합부의 하중전달능력)

  • Kim, Kyung-Tae;Kim, Jong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.3-13
    • /
    • 2018
  • Load bearing capacity of dowel type fasteners loaded perpendicular to the shear plane is determined based on Johansen's yield theory (Johansen, 1949). In case of inclined screws whose axis is no longer perpendicular, the ultimate load of connection increases because of additional axial withdrawal capacity. To calculate load bearing capacity for inclined screws, KBC2016 and Eurocode5 provide design equations using the combination of two effects; axial and bending strength. Although their equations have been validated for a long time, there is still minimal information how to apply them for concrete-CLT joints. Since there are not many test data available, engineers have to make certain assumptions and thus results may look inconsistent in practice. In this paper, authors would like to describe the current approach and assumptions indicated by KBC2016 and Eurocode 5 and how they match the experimental results in terms of shear strength of CLT-concrete connections. To fulfill the objective, several push-out tests were performed on nine different test specimens. Each specimen has different penetration angles and depths. By analyzing load-displacement curves, the maximum shear strength, stiffness, and ductility were obtained. Shear strength values were compared with the current design codes and theoretical equations proposed in this paper. Observations on stiffness and ductility were briefly discussed.

Experimental investigation of the shear strength of hollow brick unreinforced masonry walls retrofitted with TRM system

  • Thomoglou, Athanasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.355-372
    • /
    • 2022
  • The study is part of an experimental program on full-scale Un-Reinforced Masonry (URM) wall panels strengthened with Textile reinforced mortars (TRM). Eight brick walls (two with and five without central opening), were tested under the diagonal tension (shear) test method in order to investigate the strengthening system effectiveness on the in-plane behaviour of the walls. All the URM panels consist of the innovative components, named "Orthoblock K300 bricks" with vertical holes and a thin layer mortar. Both of them have great capacity and easy application and can be constructed much more rapidly than the traditional bricks and mortars, increasing productivity, as well as the compressive strength of the masonry walls. Several parameters pertaining to the in-plane shear behaviour of the retrofitted panels were investigated, including shear capacity, failure modes, the number of layers of the external TRM jacket, and the existence of the central opening of the wall. For both the control and retrofitted panels, the experimental shear capacity and failure mode were compared with the predictions of existing prediction models (ACI 2013, TA 2000, Triantafillou 1998, Triantafillou 2016, CNR 2018, CNR 2013, Eurocode 6, Eurocode 8, Thomoglou et al. 2020). The experimental work allowed an evaluation of the shear performance in the case of the bidirectional textile (TRM) system applied on the URM walls. The results have shown that some analytical models present a better accuracy in predicting the shear resistance of all the strengthened masonry walls with TRM systems which can be used in design guidelines for reliable predictions.

Codes and standards on computational wind engineering for structural design: State of art and recent trends

  • Luca Bruno;Nicolas Coste;Claudio Mannini;Alessandro Mariotti;Luca Patruno;Paolo Schito;Giuseppe Vairo
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.133-151
    • /
    • 2023
  • This paper first provides a wide overview about the design codes and standards covering the use of Computational Wind Engineering / Computational Fluid Dynamics (CWE/CFD) for wind-sensitive structures and built environment. Second, the paper sets out the basic assumptions and underlying concepts of the new Annex T "Simulations by Computational Fluid Dynamics (CFD/CWE)" of the revised version "Guide for the assessment of wind actions and effects on structures" issued by the Advisory Committee on Technical Recommendations for Constructions of the Italian National Research Council in February 2019 and drafted by the members of the Special Interest Group on Computational Wind Engineering of the Italian Association for Wind Engineering (ANIV-CWE). The same group is currently advising UNI CT021/SC1 in supporting the drafting of the new Annex K - "Derivation of design parameters from wind tunnel tests and numerical simulations" of the revised Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Finally, the paper outlines the subjects most open to development at the technical and applicative level.

Experiments on Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장복부판을 갖는 플레이트거더의 휨강도 평가 실험)

  • Park, Yong Myung;Lee, Kun Joon;Ju, Ho Jung;Jo, Sung Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.595-604
    • /
    • 2014
  • In this paper, a series of experiments for the evaluation of flexural resistance of longitudinally stiffened plate girder with slender web were conducted. For the purpose, four plate girder specimens with and without longitudinal stiffener were fabricated for the web slenderness of 219 and 156. The test results were compared with the current AASHTO LRFD and Eurocode 3 codes, respectively. As presented in the previous paper by the authors, it was acknowledged that the AASHTO LRFD code could considerably underestimate the flexural resistance of longitudinally stiffened girder with slender web and the proposed method in the previous paper could estimate the flexural resistance reasonably.

Experimental and Numerical Analysis on Full High Strength Steel Extended Endplate Connections in Fire

  • Qiang, Xuhong;Wu, Nianduo;Jiang, Xu;Luo, Yongfeng;Bijlaard, Frans
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1350-1362
    • /
    • 2018
  • Full-scale experimental study and numerical analysis on behaviors and failure mechanisms of full high strength steel extended endplate connections in fire have been carried out and presented in this paper. The experimental behaviors of the connections were compared with the provisions of Eurocode 3. The test results show that the failure modes of the connections in fire are bolt failure with yielding of the flange, as same as those at ambient temperature. The failures of the bolts in fire are ductile while they are brittle at ambient temperature. The rotation capacity of the connections in fire is proved sufficient. What is more, at elevated temperature $550^{\circ}C$, the plastic moment resistances of Q690 and Q960 full high strength steel endplate connections are only 40% of those at ambient temperature, while their initial rotation stiffness are 66 and 63% respectively. But the rotation capacities of Q690 and Q960 high strength steel endplate connections are 1.38 and 1.74 times of those at ambient temperature. Moreover, it is found that the component method Eurocode 3 proposed based on connections made of mild steels can be used to calculate plastic resistances and to predict failure modes of high strength steel endplate connections in fire, but it is not suitable to predict their stiffness. The suggestions about rotation capacity of connections in Eurocode 3 are found too conservative for high strength steel endplate connections in fire.

Comparison between ACI 318-05 and Eurocode 2 (EC2-94) in flexural concrete design

  • Hawileh, Rami A.;Malhas, Faris A.;Rahman, Adeeb
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.705-724
    • /
    • 2009
  • The two major widely used building design code documents of reinforced concrete structures are the ACI 318-05 and Eurocode for the Design of Concrete Structures EC2. Therefore, a thorough comparative analysis of the provisions of these codes is required to confirm their validity and identify discrepancies in either code. In this context, provisions of flexural computations would be particularly attractive for detailed comparison. The provisions of safety concepts, design assumptions, cross-sectional moment capacity, ductility, minimum and maximum reinforcement ratios, and load safety factors of both the ACI 318-05 and EC2 is conducted with parametric analysis. In order to conduct the comparison successfully, the parameters and procedures of EC2 were reformatted and defined in terms of those of ACI 318-05. This paper concluded that although the adopted rationale and methodology of computing the design strength is significantly different between the two codes, the overall EC2 flexural provisions are slightly more conservative with a little of practical difference than those of ACI 318-05. In addition, for the limit of maximum reinforcement ratio, EC2 assures higher sectional ductility than ACI 318-05. Overall, EC2 provisions provide a higher safety factor than those of ACI 318-05 for low values of Live/Dead load ratios. As the ratio increases the difference between the two codes decreases and becomes almost negligible for ratios higher than 4.

Local Buckling and Optimum Width-Thickness Ratios of I-Beams in Fire (화재시 I-형강 보의 국부좌굴과 최적 폭-두께비)

  • Kang, Moon Myung;Yun, Young Mook;Kang, Sung Duk;Plank, R.J.
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.491-498
    • /
    • 2005
  • This study involves the development of a computer program to analyze the local buckling stresses for the flange and the web of I-beams under compression at elevated temperatures, and the optimization algorithm to analyze the optimum width-thickness ratios which does not occur their local buckling prior to yield failure. The high-temperature stress-strain relationships of steel used in this study were based on EC3 (Eurocode3) Part1.2 (2000b). In this study, the local buckling stresses and the optimum width-thichness ratios were analyzed considering the influences of the yield stress, local buckling coefficients and width-thickness ratios of the flange and the web. Design examples show the applicability of the computer program developed in this study.

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.