DOI QR코드

DOI QR Code

Experimental and Numerical Analysis on Full High Strength Steel Extended Endplate Connections in Fire

  • Qiang, Xuhong (College of Civil Engineering, Tongji University) ;
  • Wu, Nianduo (College of Civil Engineering, Tongji University) ;
  • Jiang, Xu (College of Civil Engineering, Tongji University) ;
  • Luo, Yongfeng (College of Civil Engineering, Tongji University) ;
  • Bijlaard, Frans (Faculty of Civil Engineering and Geosciences, Delft University of Technology)
  • Received : 2018.03.22
  • Accepted : 2018.07.25
  • Published : 2018.11.30

Abstract

Full-scale experimental study and numerical analysis on behaviors and failure mechanisms of full high strength steel extended endplate connections in fire have been carried out and presented in this paper. The experimental behaviors of the connections were compared with the provisions of Eurocode 3. The test results show that the failure modes of the connections in fire are bolt failure with yielding of the flange, as same as those at ambient temperature. The failures of the bolts in fire are ductile while they are brittle at ambient temperature. The rotation capacity of the connections in fire is proved sufficient. What is more, at elevated temperature $550^{\circ}C$, the plastic moment resistances of Q690 and Q960 full high strength steel endplate connections are only 40% of those at ambient temperature, while their initial rotation stiffness are 66 and 63% respectively. But the rotation capacities of Q690 and Q960 high strength steel endplate connections are 1.38 and 1.74 times of those at ambient temperature. Moreover, it is found that the component method Eurocode 3 proposed based on connections made of mild steels can be used to calculate plastic resistances and to predict failure modes of high strength steel endplate connections in fire, but it is not suitable to predict their stiffness. The suggestions about rotation capacity of connections in Eurocode 3 are found too conservative for high strength steel endplate connections in fire.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China

References

  1. Al-Jabri, K. S. (2004). Component-based model of the behaviour of flexible end-plate connections at elevated temperatures. Composite Structures, 66(1), 215-221. https://doi.org/10.1016/j.compstruct.2004.04.040
  2. Al-Jabri, K. S., Lennon, T., Burgess, I. W., & Plank, R. J. (1998). Behavior of steel and composite beam-column connections in fire. Journal of Constructional Steel Research, 46(1), 308-309. https://doi.org/10.1016/S0143-974X(98)00059-5
  3. Al-Jabri, K. S., Pillay, P., Waris, M. B., & Pervez, T. (2016). Modeling of composite beam-column flexible endplate joints at elevated temperature. Composite Structures, 143, 180-188. https://doi.org/10.1016/j.compstruct.2016.01.069
  4. Al-Jabri, K. S., Seibi, A., & Karrech, A. (2006). Modelling of unstiff-ened flush end-plate bolted connections in fire. Journal of Constructional Steel Research, 62(1-2), 151-159. https://doi.org/10.1016/j.jcsr.2005.04.016
  5. Armer, G. S. T., & Moore, D. B. (1994). Full-scale testing on complete multi-storey structures. Structure Engineering, 72(2), 30-31.
  6. CECS 200. (2006). Technical code for fire safety of steel structures in buildings. (in Chinese).
  7. Coelho, A. M. G., & Bijlaard, F. S. K. (2007). Experimental behaviour of high strength steel end-plate connections. Journal of Constructional Steel Research, 63(9), 1228-1240. https://doi.org/10.1016/j.jcsr.2006.11.010
  8. Coelho, A. M. G., & Bijlaard, F. (2010). High strength steel in buildings and civil engineering structures: Design of connections. Advances in Structural Engineering, 13(3), 413-429. https://doi.org/10.1260/1369-4332.13.3.413
  9. Coelho, A. M. G., Bijlaard, F. S. K., & Silva, L. S. D. (2004). Experimental assessment of the ductility of extended end plate connections. Engineering Structures, 26(9), 1185-1206. https://doi.org/10.1016/j.engstruct.2000.09.001
  10. Coelho, A. M. G., Silva, L. S. D., & Bijlaard, F. S. K. (2006). Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method. Steel & Composite Structures, 6(1), 33-53. https://doi.org/10.12989/scs.2006.6.1.033
  11. Euro Code 3. (2004). Design of steel structures-Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S700. BS EN 1993-1-12.
  12. Euro Code 3. (2005). Design of steel structures-Part 1-2: general rulesstructural fire design. BS EN 1993-1-2.
  13. Euro Code 3. (2005). Design of steel structures-Part 1-8: design of joints. BS EN 1993-1-8.
  14. Fan, S., Jia, L., Lyu, X., et al. (2017). Experimental investigation of austenitic stainless steel material at elevated temperatures. Construction and Building Materials, 155, 267-285. https://doi.org/10.1016/j.conbuildmat.2017.08.047
  15. Gao, Y., Yu, H., & Shi, G. (2013). Resistance of flush endplate connections under tension and shear in fire. Journal of Constructional Steel Research, 86(86), 195-205. https://doi.org/10.1016/j.jcsr.2013.03.015
  16. GB 50017. (2003). Code for design of steel structures. (in Chinese).
  17. Hosseini, S. A., Zeinoddini, M., & Darian, A. S. (2014). Modelling of i-shaped beam-to-tubular column connection subjected to postfire conditions. International Journal of Steel Structures, 14(3), 513-528. https://doi.org/10.1007/s13296-014-3008-7
  18. Hu, Y., Davison, B., Burgess, I., & Plank, R. (2009). Component modelling of flexible end-plate connections in fire. International Journal of Steel Structures, 9(1), 1-15.
  19. Huang, S. S., Dong, G., Davison, J. B., & Burgess, I. (2012). The role of connections in the response of steel frames to fire. Structural Engineering International, 22(4), 449-461.
  20. Jaspart, J. P. (1997). Contributions to recent advances in the field of steel joints. Column bases and further configurations for beam-tocolumn joints and column bases. Doctoral dissertation, Universite de Liege.
  21. Lennon, T., Jones, L. C. L., Plank, R. J., & Burgess, I. W. (1997). Elevated-temperature moment-rotation tests on steelwork connections. Structures & Buildings, 122(4), 410-419.
  22. Li, G., Li, M., Yin, Y., et al. (2001). Experimental studies on the behavior of high-strength bolts made of 20MnTiB steel at elevated temperatures. China Civil Engineering Journal, 34(5), 100-104. (in Chinese).
  23. Li, Y., Li, W., Zhang, X., et al. (2018). Modeling of temperature dependent yield strength for stainless steel considering nonlinear behavior and the effect of phase transition. Construction and Building Materials, 159, 147-154. https://doi.org/10.1016/j.conbuildmat.2017.10.106
  24. Lou, G., Wang, C., Jiang, J., et al. (2018). Fire tests on full-scale steel portal frames against progressive collapse. Journal of Constructional Steel Research, 145, 137-152. https://doi.org/10.1016/j.jcsr.2018.02.024
  25. Moore, D. B., & Lennon, T. (1997). Fire engineering design of steel structures. Progress in Structural Engineering and Materials, 1(1), 4-9. https://doi.org/10.1002/pse.2260010104
  26. Qiang, X., Bijlaard, F., & Kolstein, H. (2012). Dependence of mechanical properties of high strength steel S690 on elevated temperatures. Construction and Building Materials, 30(30), 73-79. https://doi.org/10.1016/j.conbuildmat.2011.12.018
  27. Qiang, X., Bijlaard, F. S. K., Kolstein, H., & Jiang, X. (2014a). Behaviour of beam-to-column high strength steel endplate connections under fire conditions-Part 1: Experimental study. Engineering Structures, 64(4), 23-38. https://doi.org/10.1016/j.engstruct.2014.01.028
  28. Qiang, X., Bijlaard, F. S., Kolstein, H., & Jiang, X. (2014b). Behaviour of beam-to-column high strength steel endplate connections under fire conditions-Part 2: Numerical study. Engineering Structures, 64(4), 39-51. https://doi.org/10.1016/j.engstruct.2014.01.034
  29. Qiang, X., Jiang, X., Bijlaard, F. S. K., & Kolstein, H. (2016). Mechanical properties and design recommendations of very high strength steel S960 in fire. Engineering Structures, 112, 60-70. https://doi.org/10.1016/j.engstruct.2016.01.008
  30. Qiang, X., Jiang, X., Bijlaard, F. S., Kolstein, H., & Luo, Y. (2015a). Post-fire behaviour of high strength steel endplate connections-Part 1: Experimental study. Journal of Constructional Steel Research, 108, 82-93. https://doi.org/10.1016/j.jcsr.2014.10.028
  31. Qiang, X., Jiang, X., Bijlaard, F. S., Kolstein, H., & Luo, Y. (2015b). Post-fire behaviour of high strength steel endplate connections-Part 2: Numerical study. Journal of Constructional Steel Research, 108, 94-102. https://doi.org/10.1016/j.jcsr.2014.10.027
  32. Qiang, X., Wu, Jiang, X., et al. (2018). Experimental and theoretical study on high strength steel extended endplate connections after fire. International Journal of Steel Structures, 2018, 1-26. https://doi.org/10.1007/s1329 6-018-0020-3.
  33. Qiang, X., Wu, N., Luo Y., et al. (2017). Experimental and numerical analysis on high strength steel extended endplate connections. Journal of Hunan University Natural Science, accepted. (in Chinese).
  34. Shi, G., Ban, H., Shi, Y., et al. (2013). Overview of research progress for high strength steel structures. Engineering Mechanics, 30(1), 1-13. (in Chinese).
  35. Spyrou, S., Davison, J. B., Burgess, I. W., & Plank, R. J. (2004a). Experimental and analytical investigation of the ‘compression zone’ components within a steel joint at elevated temperatures. Journal of Constructional Steel Research, 60(6), 841-865. https://doi.org/10.1016/j.jcsr.2003.10.005
  36. Spyrou, S., Davison, J. B., Burgess, I. W., & Plank, R. J. (2004b). Experimental and analytical investigation of the ‘tension zone’ components within a steel joint at elevated temperatures. Journal of Constructional Steel Research, 60(6), 867-896. https://doi.org/10.1016/j.jcsr.2003.10.006
  37. Strejcek, M., Řeznicek, J., Tan, K. H., & Wald, F. (2011). Behavior of column web component of steel beam-to-column joints at elevated temperatures. Journal of Constructional Steel Research, 67(12), 1890-1899. https://doi.org/10.1016/j.jcsr.2011.06.004
  38. Sun, F., Sun, M., Li, G., Xiao, Y., et al. (2014). Experimental study on seismic behavior of high-strength steel beam-to-column end-plate connections. Journal of Building Structures, 35(4), 116-124. (in Chinese).
  39. Wald, F., Silva, L. S. D., Moore, D. B., Lennon, T., Chladna, M., Santiago, A., et al. (2006). Experimental behavior of a steel structure under natural fire. Fire Safety Journal, 41(7), 509-522. https://doi.org/10.1016/j.firesaf.2006.05.006
  40. Wilkinson, S., Hurdman, G., & Crowther, A. (2006). A moment resisting connection for earthquake resistant structures. Journal of Constructional Steel Research, 62(3), 295-302. https://doi.org/10.1016/j.jcsr.2005.07.011
  41. Witteveen, J., Twilt, L., & Bijlaard, F. S. K. (1977). Theoretical and experimental analysis of steel structures at elevated temperatures. In Proceedings of 10th international association for bridge and structural engineering, Tokyo, Final Report Zurich.
  42. Yu, H., Burgess, I. W., Davison, J. B., & Plank, R. J. (2010). Experimental and numerical investigations of the behavior of flush end plate connections at elevated temperatures. Journal of Structural Engineering, 137(1), 80-87.
  43. Zhang, L., & Wang, P. (2018). Simplified analysis method for catenary action of restrained cellular steel beams at elevated temperature considering strain reversal. Fire Safety Journal, 95(1), 145-159. https://doi.org/10.1016/j.firesaf.2017.11.009
  44. Zoetemeijer, P. (1990). Summary of the research on bolted beam-tocolumn connections. TU Delft, Faculteit der Civiele Techniek.

Cited by

  1. Seismic Rehabilitation of Tall Steel Moment Resisting Frames Damaged by Fire with SMA-Based Hybrid Friction Damper vol.20, pp.1, 2020, https://doi.org/10.1007/s13296-019-00270-y