• 제목/요약/키워드: Eulerian-eulerian

검색결과 519건 처리시간 0.022초

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

메탄올 Bluff-Body 난류 화염내의 화염구조 및 $NO_{x}$ 생성 특성에 대한 수치적 연구 (Flamelet Modeling of Structures and $NO_{x}$ Formation Charateristics in Bluff-Body stabilized Methanol Flames)

  • 이준규;김성구;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.37-42
    • /
    • 2001
  • This paper computes the bluff-body stabilized jet and flame. This study numerically investigates the nonpremixed $C_{2}H_{4}-air$ jet for the nonreacting case and the nonpremixed $CH_{3}OH-air$ turbulent flames for the reacting case using the laminar flamelet model on modified KIVA2 code. And this study predicts $NO_{x}$ formation characteristics using Eulerian Particle Flamelet Model. In the present study, the turbulent combustion model is applied to analyze both nonreacting and reacting case. And both standard $k-{\varepsilon}$ model and modified $k-{\varepsilon}$ model are used in nonreacting case. Calculations are compared with experimental data in terms of velocity, mixture fraction, mixture fraction Root Mean Square and Temperature. The present model correctly predicts the essential features of flame structures and $NO_{x}$ formation characteristics in the bluff-body stabilized flames.

  • PDF

가상경계법을 적용한 2차원 미생물 이동에 관한 수치연구 (NUMERICAL SIMULATION OF TWO-DIMENSIONAL MICROORGANISM LOCOMOTION USING THE IMMERSED BOUNDARY METHOD)

  • 란지트;서용권;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.164-169
    • /
    • 2009
  • Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy in the field of biological fluiddynamics, The present work aims at performing a numerical study on the microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the numerical results with the available results.

  • PDF

2차원 광화학수송모델을 이용한 포항지역의 1995-1996년 기간동안 오존의 연직 프로파일 및 전량 추정 (Estimation of Vertical Profiles and Total Amount of Ozone Using Two-Dimensional Photochemical Transfer Model During the Period of 1995-1996 at Pohang)

  • 문윤섭
    • 한국대기환경학회지
    • /
    • 제22권3호
    • /
    • pp.271-285
    • /
    • 2006
  • A two-dimensional photochemical transport model (2D PTM) is simulated to describe the transport and chemical reaction of ozone related to aerosols in the troposphere and stratosphere. The vertical profiles and total amounts of ozone, which are advected by both residual Eulerian circulation and the adiabatic circulation under certain circumstance, have been compared with the observation data such as ozonesondes, Brewer spectrometer, the Upper Atmosphere Research Satellite (UARS), and the Total Ozone Mapping Spectrophotometer (TOMS). As a result, we find that the observed distribution of ozone Is adequately reproduced in the model at middle and high latitude in the Northern Hemisphere as well as at Phang ($36^{\circ}\;02'N,\;129^{\circ}\;23'E$) in South Korea. In particular, the 2D PTM is well simulated in the ozone decrease due to the Pinatubo volcanic eruption in 1991. However, ozone mixing ratio are more underestimated than those of UARS and ozonesondes, because are very sensitive to the latitude of transport across the tropopause associated with both Rummukainen errors and off-line model. Relative mean bias errors and relative root mean square errors of ozone calculations using the 2D PTM are shown within${\pm}10%$, respectively.

새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석 (A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir)

  • 전지혜;정세웅
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Large Scale Gap 시험의 전산모사연구 (Study on the Computational Simulation of Large Scale Gap Test)

  • 이진성;박정수;이영신
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

ALE 유한요소법을 이용한 유연매체의 거동해석 (Analysis of Flexible Media Using ALE Finite Element Method)

  • 지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.247-250
    • /
    • 2007
  • Flexible media such as the paper, the film, etc. are thin, light and very flexible. They behave in geometrically nonlinear. Any of small force makes large deformation. So we must including aerodynamic effect when its behavior is predicted. Thus, it becomes fully coupled fluid-structure interaction(FSI) problem. In FSI problems, where the fluid mesh near the structure undergoes large deformations and becomes unacceptably distorted, which drive the time step to a very small value for explicit calculations, the arbitrary Lagrangian-Eulerian(ALE) methods or rezoning are used to create a new undistorted mesh for the fluid domain, which allows the calculations to continue. In this paper, FE sheet model considering geometric nonlinearity is formulated to simulate the behavior of the flexible media. Aerodynamic force to the media by surrounding air is calculated by solving the incompressible Navier-Stokes equations. Q2Q1(Taylor-Hood) element which means biquadratic for velocity and bilinear for pressure is used for fluid domain. Q2Q1 element satisfies LBB condition and any stabilization technique is not needed. In this paper, cantilevered sheet in the viscous incompressible Navier-Stokes flow is simulated to check the mesh motion and numerical integration scheme, and then falling paper in the air is simulated and the effects of some representative parameters are investigated.

  • PDF

연료탱크내 액체연료와 고체입자의 혼합 수치해석 연구 (A Numerical Study on Mixing of Liquid Fuel and Solid Particles in a Fuel Tank)

  • 김명호;유경원;민성기;황기영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.745-749
    • /
    • 2011
  • 혼합용 임펠러를 장착한 연료탱크의 액체연료와 미세 고체입자의 부유, 혼합 현상을 분석하고자 2차원 혼합 유동 수치해석을 수행하였다. 다상 유동해석은 Eulerian Grandular Multiphase 기법을 사용하였고, 해석기법을 12vol% 고체 혼합 조건 실험의 축방향 고체 농도 분포와 비교하여 확인하였다. 해석용 연료탱크는 10.5vol% 고체입자를 액체연료와 혼합하는 것으로 회전수 700rpm 조건에서 4가지 경우의 임펠러 위치와 유속 조건으로 해석을 수행하였다. 각 경우에 대한 Quality of Suspension 결과를 비교하여 적합한 임펠러 위치와 속도방향을 확인하였다.

  • PDF

에너지 물질이 포함된 장치의 폭발 해석을 위한 다중물질 해석 방법 (Numerical Method Aimed at Multi-material Simulation of the Energetic Device)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.274-278
    • /
    • 2011
  • 다양한 고에너지 물질이 포함된 폭발 장치를 정확하게 해석하기 위해서는 고에너지 물질의 다양한 연소 현상과 주변을 둘러싸고 있는 고체물질에 대한 대변형 현상을 정확하게 모사하는 것이 필수적이다. 이를 위하여 본 연구에서는 다중물질 각각의 경계면을 level set 함수를 이용하여 정확하게 표현하였으며, 경계면은 ghost fluid 기법을 사용하여 나타내었다. 각각의 물질에 대하여 대변형에 적합한 구성방정식을 사용하였으며, 지배방정식을 고차의 수치해석 기법을 사용하여 해석하였다. 다양한 폭발장치 중 실험적인 데이터를 이용하여 검증이 가능한 rate stick 문제를 해석하였으며, 실험과 유사한 결과를 획득하였다.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.