• Title/Summary/Keyword: Eulerian model

Search Result 232, Processing Time 0.025 seconds

Prediction of Pollutant Transport using by Eulerian-lagrangian (Eulerian-Lagrangian Analysis(ELA) 모형을 이용한 오염물질이동 예측)

  • 최병옥;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.128-140
    • /
    • 1994
  • Coastal areas, especially embayments are apt to be polluted easily and many embayments in Korea are already suffering from pollution problems. To manage such pollution, it is strongly needed to develop technique to trace movements of pollution. Such technique cove- ring the embayment affected by the tidal influence, should take account both of the convection and the diffusion motions which cause lots of problems in numerical calculation. In this study, a Eulerian-Lagrangian Analysis(ELA) model was applied to Young Il bay and tested for its applicablity, which was developed by using the Eulerian-Lagrangian Method that reduce the numerical disperison and oscillation by way of solving convection and diffusion terrns separately. Concentration of Chemical Oxygen Demand(COD) and Suspend Solid(SS) of the embay- ment area were estimated by the model and compared with the observed values and the sound results were obtained. At the same time the diffsion coefficient and decay coefficient for Chemical Oxygen Demand in the Young II Bay were found as Dx = Dy = 20m$^2$/sec, kd=2.5 ${\times}$ 10-5/sec respectively, and for Suspend Solid, Dx =Dy = 30m$^2$/sec, kd=5.0${\times}$ 10-5/sec

  • PDF

Comparison of ELLAM and LEZOOMPC for Developing an Efficient Modeling Technique (효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석)

  • Suk Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • This study summarizes advantages and disadvantages of numerical methods and compares ELLAM and LEZOOMPC to develop an efficient numerical modeling technique on contaminant transport. Eulerian-Lagrangian method and Eulerian method are commonly used numerical techniques. However Eulerian-Lagrangian method does not conserve mass globally and fails to treat boundary in a straightforward manner. Also, Eulerian method has restrictions on the size of Courant number and mesh Peclet number because of time truncation error. ELLAM (Eulerian Lagrangian Localized Adjoint Method) which has been popularly used for past 10 years in numerical modeling, is known for overcoming these numerical problems of Eulerian-Lagrangian method and Eulerian method. However, this study investigates advantages and disadvantages of ELLAM and suggests a change for the better. To figure out the disadvantages of ELLAM, the results of ELLAM, LEZOOMPC (Lagrangian-Eulerian ZOOMing Peak and valley Capturing), and visual MODFLOW are compared for four examples having different mesh Peclet numbers. The result of ELLAM generates numerical oscillation at infinite of mesh Peclet number, but that of LEZOOMPC yields accurate simulations. The simulation results suggest that the numerical error of ELLAM could be alleviated by adopting some schemes in LEZOOMPC. In other words, the numerical model which combines ELLAM with backward particle tracking, forward particle tracking, adaptively local zooming, and peak/valley capturing of LEZOOMPC can be developed for not only overcoming the numerical error of ELLAM, but also keeping the numerical advantage of ELLAM.

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

Bubble-driven Convective Flow in the Liquid with Temperature Gradient (온도구배가 있는 액체 내에서 기포가 유발하는 대류유동)

  • Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2011
  • Numerical simulation has been performed to investigate the bubbly flow in the liquid with vertical temperature gradient. The objective of this study is to establish an accurate numerical prediction program of gas-liquid two-phase flows in a vertical temperature gradient condition, whose mathematical model is formulated by the Eulerian-Lagrangian model. The present numerical results reveal the temperature mixing mechanism and the fluid dynamical characteristics induced by the bubbly flow in the liquid with stratified temperature. The effects of bubble radius, void fraction, and gas flow rate on bubble-driven convective flow are considered, too.

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method (Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.

Blast Analysis of Concrete Structure using Arbitrary Lagrangian-Eulerian Technique (Arbitrary Lagrangian-Eulerian기법을 적용한 콘크리트 구조물의 폭발해석)

  • Yi, Na-Hyun;Kim, Sung-Bae;Nam, Jin-Won;Lee, Sung-Tae;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • Blast load, an impulsive load with extremely short time duration with very high pressure, is effected by ground and air condition, weight of charge, shape and location of structure. In this study, a blast dynamic analysis for the air-structural integrated model considering dynamic properties of materials and simulation of complex blast wave propagation by Arbitrary Lagrangian- Eulerian technique is suggested to perform an accurate blast analysis of concrete structures. For the verification of the proposed blast analysis method, which is the air-structure integrated model using ALE technique, the comparison of analysis and experimental results is performed. The verification confirms that the simulation of realistic behavior of RC wall structures is possible using ALE method. Also, the example cases which have been analyzed using this method show that the estimation to the structural failure criterion for blast load failure can be represented by energy absorbtion procedure.

  • PDF

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Numerical Investigation of Transverse Dispersion in Natural Channels (자연하천에서 오염물질의 횡확산에 관한 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.151-162
    • /
    • 1995
  • A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.

  • PDF