• 제목/요약/키워드: Euler-Bernoulli beams

검색결과 176건 처리시간 0.025초

단순지지 변화곡선 길이 보의 정확탄성곡선 (Elastica of Simple Variable-Arc-Length Beams)

  • 이병구;박성근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.177-184
    • /
    • 1997
  • 이 논문은 한개의 집중하중을 받는 단순지지 변화곡선길이 보에 관한 연구이다. Bernoulli-Euler 보 이론에 의하여 정확탄성곡선을 지배하는 미분방정식을 유도하고 이를 수치해석하여 정확탄성곡선의 거동값들을 예측하였다. 미분방정식을 적분하기 위하여 Runge-Kutta method를 이용하고, 단부의 회전각을 산출하기 위하여 Regula-Falsi method를 이용하였다. 본 연구에서의 수치해석 결과들은 문헌값들과 매우 잘 일치하여 본 연구방법의 타당성을 입증하였다. 수치해석의 결과로 정확탄성곡선의 거동값과 하중사이의 관계 및 한계거동값과 하중위치변수 사이의 관계를 각각 그림에 나타내었다. 수치해석의 결과를 분석하여 변화곡선길이 보에서 발생가능한 최대 단부회전각, 최대 처짐 및 최대 휨모멘트를 산정하였다.

  • PDF

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Exact stochastic solution of beams subjected to delta-correlated loads

  • Falsone, G.;Settineri, D.
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.307-329
    • /
    • 2013
  • The bending problem of Euler-Bernoulli discontinuous beams is dealt with, in which the discontinuities are due to the loads and eventually to essential constrains applied along the beam axis. In particular, the loads are modelled as random delta-correlated processes acting along the beam axis, while the ulterior eventual discontinuities are produced by the presence of external rollers applied along the beam axis. This kind of structural model can be considered in the static study of bridge beams. In the present work the exact expression of the response quantities are given in terms of means and variances, thanks to the use of the stochastic analysis rules and to the use of the generalized functions. The knowledge of the means and the variances of the internal forces implies the possibility of applying the reliability ${\beta}$-method for verifying the beam.

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도 (Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations)

  • 김용우;최남석;정명조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF

동지점 유한요소를 이용한 정정보의 지진해석 (Seismic Analysis of Statically Determinate Beams Using Moving Support Finite Elements)

  • 김용우;이승열;정명조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.194-199
    • /
    • 2013
  • Using moving support finite elements, seismic analysis of statically-determinate beams subjected to support motions is performed to show its accuracy and its ease of use. Examples of cantilever and simply-supported beam subjected to support motions are illustrated and the numerical results are compared with the analytical solutions. The examples show the elements facilitate modeling beams with the conventional 2-noded, Hermitian, Euler-Bernoulli beam element. The comparisons of the results with analytical solutions show good agreements with high accuracy.

  • PDF

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass

  • Gurgoze, Metin;Zeren, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1105-1126
    • /
    • 2015
  • Many vibrating mechanical systems from the real life are modeled as combined dynamical systems consisting of beams to which spring-mass secondary systems are attached. In most of the publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span helical spring-mass systems were determined via the solution of the established eigenvalue problem, where the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite different way, namely, by using the so-called "characteristic force" method. Further, parametric investigations are carried out for two representative types of supporting conditions of the bending beam.