• Title/Summary/Keyword: Euler-Bernoulli beam

Search Result 425, Processing Time 0.025 seconds

Dynamic Instability of Elastically Restrained Valve-pipe System (탄성 지지된 밸브 배관계의 동적 불안정)

  • Son, In-Soo;Hur, Kwan-Do;Gal, Young-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.90-95
    • /
    • 2010
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The influence of attached mass and its position on the dynamic instability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by changing the parameters.

Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구)

  • 서종휘;정일호;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

Stability Analysis of Pipe Conveying Fluid with Crack and Attached Masses (크랙과 부가질량들을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.121-131
    • /
    • 2008
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity. As attached masses are increased, the region of re-stabilization of the system is decreased but the region of divergence is increased.

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.391-403
    • /
    • 2019
  • In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.