• Title/Summary/Keyword: Euler parameters

Search Result 225, Processing Time 0.026 seconds

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

Development of Mandibular Movements Measuring System Using Double Stereo-Cameras

  • Park, Soon-Yong;Park, Sung-Kee;Cho, Chang-Hyun;Kim, Mun-Sang;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1183-1188
    • /
    • 2005
  • In this paper, we propose a 3D automated measuring system which measures the mandibular movements and the reference plane of the jaw movements. In diagnosis and treatment of the malocclusions, it is necessary to estimate the mandibular movements and the reference plane of the jaw movements. The proposed system is configured with double stereo-cameras, PC, two moving pattern plates(MPPs), two fixed pattern plates(FPPs) and one orbital marker. The virtual pattern plate is applied to calculate the homogeneous transformation matrices which describe the coordinates systems of the FPP and MPP with respect to the world coordinates system. To estimate the parameters of the hinge axis, the Euler's theorem is applied. The hinge axis points are intersections between the FPPs and the hinge axis. The coordinates of a hinge axis point with respect to the MPP coordinates system are set up to fixed value. And then, the paths of the jaw movement can be calculated by applying the homogeneous transformation matrix to fixed hinge axis point. To examine the accuracy of the measurements, experiments of measuring the hinge axis points and floating paths of them are performed using the jaw motion simulator. As results, the measurement errors of the hinge axis points are within reasonable boundary, and the floating paths are very similar to the simulator's moving path.

  • PDF

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

An Experimental Study on Breaking Waves (쇄파 발생에 관한 실험적 연구)

  • 이동연;주성문;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • Breaking waves were generated in a 2-D flume. A piston-type wavemaker was operated in accordance with signals which consist of elementary harmonics with appropriate phase differences. These phase differences were estimated by using a linear wave theory so that wave crests were to be concentrated at the same position. The stroke of wavemaker was controlled to create plunging-type breaking waves. The signal with small amplitude could not generate breaking waves. In the case of moderate amplitudes, various breaking waves could be obtained. Most of breaking waves were spilling type. Only when the wavemaker was operated with appropriate amplitude, plunging-type breaking waves were generated. The parameters of breaking waves are the wave steepness and the frequency bandwidth. If the central frequency was low, breaking waves were not generated. Based on experimental data, we found that the wave height of breaking inception was H = 0.0113 gT$^2$. We also made computations by using a mixed Euler-Lagrangian scheme under the assumption of potential flow. The numerical results show good agreements with tank measurements.

  • PDF

Coupled Dynamic Analyses of Underwater Tracked Vehicle and Long Flexible Pipe (유연관-해저주행차량 연성 동적거동 해석)

  • Hong, Sup;Kim, Hyung-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • We developed a computational method on coupled dynamics of tracked vehicle on seafloor and long flexible pipe. The tracked vehicle is modeled as rigid-body vehicle, and the linked flexible pipe is discretized according to a lumped-parameter model. The equations of motion of the rigid-body vehicle on the soft seafloor are combined with the governing equations of flexible pipe dynamics. Four Euler parameters method is used to express the orientations of the vehicle and the flexible pipe. In order to solve the nonlinear coupled dynamics of vehicle and flexible pipe an incremental-iterative formulation is implemented. For the time-domain integration $Newmark-\beta$ method is adopted. The total Jacobean matrix has been derived based on the incremental-iterative formulation. The interactions between the dynamics of flexible pipe and the mobility of the tracked vehicle on soft seafloor are investigated through numerical simulations in time domain.

Numerical Studies on the Deceleration Characteristics of Supersonic Projectile According to the Test Condition Parameters in a Soft Recovery System (저감속 회수장비 시험조건에 따른 초음속 시험탄 감속특성에 대한 수치해석적 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.485-493
    • /
    • 2020
  • Numerical analyses were performed using a one-dimensional Euler equation and Godunov Harten-Lax-Van Leer(HLL) Riemann solver in order to study the deceleration characteristics of a 155 mm projectile in a soft recovery system. The soft recovery system consisting of a series of pressure tubes is a system that decelerates the test projectile fired at supersonic speed using a high-pressure gas and filled water inside. Therefore, depending on the gas pressure and the amount of water filling, the deceleration and the exit velocity of the test projectile inside the pressure tube are determined. In this paper, the deceleration characteristics of the test projectile were analyzed according to the gas pressure and water mass filled.

Series tuned mass dampers in vibration control of continuous railway bridges

  • Araz, Onur;Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • This paper presents the applicability of series tuned mass dampers (STMDs) to reduce the multiple resonant responses of continuous railway bridges under high-speed train. The bridge is modeled by two-span Bernoulli-Euler beam with uniform cross-section, and a STMD device consisting of two TMD units installed on the bridge to reduce its multiple resonant vibrations. The system is assumed to be under the action of a high-speed train passage which is modeled as a series of moving forces. Sequential Programming Technique (SQP) is carried out to find the optimal parameters of the STMD that minimizes the maximum peak responses of the bridge. Comparisons with the results available in the literature are presented to demonstrate the effectiveness and robustness of STMD system in reducing the multiple resonant responses of the continuous railway bridges under high-speed trains.

Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach

  • Bayat, Mahmoud;Bayat, Mahdi;Kia, Mehdi;Ahmadi, Hamid Reza;Pakar, Iman
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • In this paper, nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation is studied. It has been tried to prepare a semi-analytical solution for whole domain of vibration. Only one iteration lead us to high accurate solution. The effects of linear elastic foundation on the response of the beam vibration are considered and studied. The effects of important parameters on the ratio of nonlinear to linear frequency of the system are studied. The results are compared with numerical solution using Runge-Kutta $4^{th}$ technique. It has been shown that the Max-Min approach can be easily extended in nonlinear partial differential equations.

Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix

  • Belmahi, Samir;Zidour, Mohamed;Meradjah, Mustapha;Bensattalah, Tayeb;Dihaj, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • In this study, we investigate the vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories with account arbitrary boundary conditions effects. A Winkler type elastic foundation is employed to model the interaction of nanobeam and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, Winkler modulus parameter, vibration mode and aspect ratio of nanobeam on the vibration frequency are analyzed and discussed. The mechanical properties of carbon nanotubes and polymer matrix are treated and an analytical solution is derived using the governing equations of the nonlocal Euler-Bernoulli beam models. Solutions have been compared with those obtained in the literature and The results obtained show that the non-dimensional natural frequency is significantly affected by the small-scale coefficient, the vibrational mode number and the elastic medium.