• Title/Summary/Keyword: Euler flow

Search Result 314, Processing Time 0.025 seconds

A Study for Rocket Exhaust Flow Cooling due to the Central Spray Type Water Injection (중앙 분사 방식 냉각수 투입에 의한 로켓 연소 후류 냉각에 관한 연구)

  • Kang, Sun-Il;Nam, Jung-Won;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 2013
  • In this study, the cooling of rocket exhaust plume by sprayed water inside plume were investigated as varying of sprayed water mass, location, and method using computational fluid analysis. For Analyze rocket exhaust plume, a single species unreacted analysis model based on the chemically frozen analysis was used and the discrete particle model which was a kind of Euler-Lagrangian analysis model was used for simulate sprayed water inside plume. It was confirmed that the temperature of plume was reduced without cooling when water mass was two times of plume mass through analysis results.

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System (첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현)

  • Yoon, Kyung-Han;Jung, Yong-Chul;Cho, Jae-Chan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.544-551
    • /
    • 2015
  • In this paper, the design and implementation results of the optical flow estimator (OFE) for moving object detection (MOD) in advanced driver assistance system (ADAS). In the proposed design, Brox's algorithm with global optimization is considered, which shows the high performance in the vehicle environment. In addition, Cholesky factorization is applied to solve Euler-Lagrange equation in Brox's algorithm. Also, shift register bank is incorporated to reduce memory access rate. The proposed optical flow estimator was designed with Verilog-HDL, and FPGA board was used for the real-time verification. Implementation results show that the proposed optical flow estimator includes the logic slices of 40.4K, 155 DSP48s, and block memory of 11,290Kbits.

Optical Flow Estimation of a Fluid Based on a Physical Model

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.539-544
    • /
    • 2009
  • An estimation of 3D velocity field including occluded parts without maxing tracer to the fluid had not only never been proposed but also impossible by the conventional computer vision algorithm. In this paper, we propose a new method of three dimensional optical flow of the fluid based on physical model, where some boundary conditions are given from a priori knowledge of the flow configuration. Optical flow is obtained by minimizing the mean square errors of a basic constraint and the matching error terms with visual data using Euler equations. Here, Navier-Stokes motion equations and the differences between occluded data and observable data are employed as the basic constrains. we verify the effectiveness of our proposed method by applying our algorithm to simulated data with partly artificially deleted and recovering the lacking data. Next, applying our method to the fluid of observable surface data and the knowledge of boundary conditions, we demonstrate that 3D optical flow are obtained by proposed algorithm.

Unsteady Compressible Flow past an Airfoil near the Moving Surface (파형 곡면 위를 비행하는 2차원 WIG익형의 비정상 압축성 유동 해석)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.191-196
    • /
    • 1998
  • A two-dimensional airfoil flying over a wavy wall is calculated by solving the unsteady Euler equation. Unsteady Transonic flow over an NACA00012 airfoil in pitching motion has been computed for code validation. Some numerical results for NACA6409 airfoil under different wave number, wave length, fly height are presented. The numerical results show the variation of lift and pitching moment coefficients are increased as wave length decrease.

  • PDF

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW (2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구)

  • Lee, Jae-Hun;Jung, Kyoung-Jin;Lee, Kil-Tae;Kang, In-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF