• Title/Summary/Keyword: Euler constant

Search Result 93, Processing Time 0.022 seconds

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Stability of Water Tower with a Relatively Small Footing (상대적으로 작은 기초를 갖는 급수탑의 안정성)

  • Oh Sang-Jin;Jin Tae-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.963-968
    • /
    • 2006
  • The main purpose of this paper is to investigate the stability of water tower with a relatively small footing. The water tower is modeled that the column carrying a container is supported by a rotational spring at the base and is of constant cross-section, with a weight per unit length of column axis. The column model is based on the Bernoulli-Euler beam theory. The Runge-Kutta method and Determinant Search method are used to perform the integration of the governing differential equation and to determine the critical values(critical own weight. and critical buckling load), respectively. The critical buckling loads are calculated over a range of system parameters: the rotational stiffness parameter, the dimensionless radius of container and the own weight parameter of the column. The relation between the rotational stiffness parameter and the critical own weight parameter of the column is analyzed.

  • PDF

Elastica of Tapered Columns of Regular Polygon Cross-Section with Constant Volume (정다각형 단면을 갖는 일정체적 변단면 기둥의 정확탄성곡선)

  • LEE, Byoung Koo;OH, Sang Jin;MO, Jeong Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.79-87
    • /
    • 1996
  • 본 논문에서는 단순지지된 일정체적의 정다각형 단면을 갖는 변단면 기둥의 정확탄성곡선(elastica)을 산출할 수 있는 수치해석법을 개발하였다. 정확탄성곡선의 미분방정식은 Bernoulli-Euler 보 이론으로 유도하였고, 미분방정식의 수치적분은 Runge-Kutta method를 이용하였다. 미분방정식의 고유치인 지점의 단면회전각은 Regula-Falsi method를 이용하여 계산하였다. 변단면의 단면 깊이의 변화식으로는 직선식, 포물선식 및 정현식의 3가지 함수식을 채택하였다. 또한 유도된 미분방정식을 이용하여 대상기둥의 좌굴하중을 산출하고 이로부터 최강기둥의 단면비와 좌굴하중을 결정하였다.

  • PDF

(1,λ)-EMBEDDED GRAPHS AND THE ACYCLIC EDGE CHOOSABILITY

  • Zhang, Xin;Liu, Guizhen;Wu, Jian-Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.573-580
    • /
    • 2012
  • A (1, ${\lambda}$)-embedded graph is a graph that can be embedded on a surface with Euler characteristic ${\lambda}$ so that each edge is crossed by at most one other edge. A graph $G$ is called ${\alpha}$-linear if there exists an integral constant ${\beta}$ such that $e(G^{\prime}){\leq}{\alpha}v(G^{\prime})+{\beta}$ for each $G^{\prime}{\subseteq}G$. In this paper, it is shown that every (1, ${\lambda}$)-embedded graph $G$ is 4-linear for all possible ${\lambda}$, and is acyclicly edge-($3{\Delta}(G)+70$)-choosable for ${\lambda}$ = 1, 2.

Forced Vibration Analysis of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Yoon, Han-Ki;Min, Byoung-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.90-96
    • /
    • 2012
  • The forced vibration response characteristics of a elastically restrained pipe conveying fluid with attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of attached mass and spring constant on the forced vibration characteristics of pipe at conveying fluid are studied. The forced deflection response of pipe with attached mass due to the variation of fluid velocity is also presented. The deflection response is the mid-span deflection of the pipe. The dimensionless forcing frequency is the range from 0 to 16 which is the first natural frequency of the pipe.

Dynamic characteristics of an elastically supported beam (탄성적으로 지지된 보의 동특성)

  • 정태진;박영조;홍동표
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.43-50
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of an elastically supported beam subjected to an axial force and solid viscosity when the frequency of external force passes through the first critical frequency of the beam. Within the Euler-Bernoulli beam theory the solutions are obtained by using finite Fourier sine transform and Laplace transformation methods with respect to space and time variables. Integrations involved in the theoretical results are carried out by Simpson's numerical integration rule. The result shows that the maximum value of the dynamic deflection are much affected by the value of a solid viscosity, an axial force, an elastic constant and ratio of .omega.$_{max}$/.omega.$_{1}$.

  • PDF

Free Vibrations of Tapered Beams with General Boundary Condition at One End and Mass at the Other End (일단은 일반적인 지지조건을 갖고 타단은 집중질량을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.493-500
    • /
    • 2001
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies and the corresponding mode shapes are calculated over a wide range of section ratio, dimensionless spring constant, and mass ratio.

  • PDF

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF