DOI QR코드

DOI QR Code

(1,λ)-EMBEDDED GRAPHS AND THE ACYCLIC EDGE CHOOSABILITY

  • Received : 2011.01.31
  • Published : 2012.05.31

Abstract

A (1, ${\lambda}$)-embedded graph is a graph that can be embedded on a surface with Euler characteristic ${\lambda}$ so that each edge is crossed by at most one other edge. A graph $G$ is called ${\alpha}$-linear if there exists an integral constant ${\beta}$ such that $e(G^{\prime}){\leq}{\alpha}v(G^{\prime})+{\beta}$ for each $G^{\prime}{\subseteq}G$. In this paper, it is shown that every (1, ${\lambda}$)-embedded graph $G$ is 4-linear for all possible ${\lambda}$, and is acyclicly edge-($3{\Delta}(G)+70$)-choosable for ${\lambda}$ = 1, 2.

Keywords

References

  1. N. Alon, C. J. H. McDiarmid, and B. A. Reed, Acyclic coloring of graphs, Random Structures Algorithms 2 (1991), no. 3, 277-288. https://doi.org/10.1002/rsa.3240020303
  2. N. Alon, B. Sudakov, and A. Zaks, Acyclic edge-colorings of graphs, J. Graph Theory 37 (2001), no. 3, 157-167. https://doi.org/10.1002/jgt.1010
  3. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
  4. T. F. Coleman and J. Cai, The cyclic coloring problem and estimation of sparse Hessian matrices, SIAM J. Algebraic Discrete Methods 7 (1986), no. 2, 221-235. https://doi.org/10.1137/0607026
  5. T. F. Coleman and J. J. More, Estimation of sparse Hessian matrices and graph coloring problems, Math. Programming 28 (1984), no. 3, 243-270. https://doi.org/10.1007/BF02612334
  6. I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007), no. 7-8, 854-865. https://doi.org/10.1016/j.disc.2005.11.056
  7. A. Fiedorowicz, M. Halszczak, and N. Narayanan, About acyclic edge colourings of planar graphs, Inform. Process. Lett. 108 (2008), no. 6 412-417. https://doi.org/10.1016/j.ipl.2008.07.016
  8. B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973), 390-408. https://doi.org/10.1007/BF02764716
  9. M. Molloy and B. Reed, Further algorithmic aspects of the local lemma, In: it Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), pp. 524-529.
  10. S. Ndreca, A. Procacci, and B. Scoppola, Improved bounds on coloring of graphs, available online at http://arxiv.org/pdf/1005.1875v1.
  11. G. Ringel, Ein sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965), 107-117. https://doi.org/10.1007/BF02996313

Cited by

  1. On edge colorings of 1-toroidal graphs vol.29, pp.7, 2013, https://doi.org/10.1007/s10114-013-1724-0
  2. On total colorings of 1-planar graphs vol.30, pp.1, 2015, https://doi.org/10.1007/s10878-013-9641-9