• 제목/요약/키워드: Euler buckling

검색결과 99건 처리시간 0.025초

일정체적 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동 (Buckling oad and Post-buckling Behavior of Tapered Column with Constant Volume and Both Clamped Ends)

  • 이병구
    • 한국농공학회지
    • /
    • 제41권5호
    • /
    • pp.112-122
    • /
    • 1999
  • 이 논문은 일정체적을 갖는 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동에 관한 연구이다. 기둥의 변단면으로는 직선형, 포물선형, 정현의 선형을 갖는세 가지 변단면을 채택하였다. Bernoulli-Euler 보 이론을 이용하여 압축하중이 작용하여 좌굴된 기둥이 정확탄성곡선을 지배하는 미분방정식을 유도하였다. 유도된 미분방정식을 Runge-Kutta 법과 REgula-Falsi법을 이용하여 수치해석하였다. 수치해석의 결과로 좌굴하중, 좌굴기둥의 평형경로 및 정확탄성곡선을 산출하였다. 또한 좌굴하중-단면비 곡선으로부터 최강기둥의 좌굴하중과 단면비를 산출하였다.

  • PDF

Influence of Uncertainties for Compressive Buckling of Composite Materials and Its Numerical Simulations

  • Ueda, Tetsuhiko;Takase, Shouhei;Ikeda, Tadashige;Iwahori, Yutaka
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.177-190
    • /
    • 2008
  • As the first step in discussing the reliability of composite structures, a fundamental study was performed to obtain the scattering characteristics of glass-fiber reinforced plastics (GFRP) and woven carbon fiber reinforced plastics (WCFRP) as well as a reference metal. The Euler buckling load was obtained experimentally for each material. The experiments were conducted for specified rectangular specimens with simply supported edges. A new attachment to realize the simply support boundary conditions for composite materials have been prepared before these experiments. The scattering data in the results for GFRP and WCFRP composites were compared with those of a typical metal of aluminum alloy. The experimental data were also compared with numerical simulations including the uncertainties.

Bending behavior of microfilaments in living cell with nonlocal effects

  • Muhammad Safeer;Muhammad Taj;Mohamed A. Khadimallah;Muzamal Hussain;Saima Akram;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.15-23
    • /
    • 2023
  • Dynamics of protein filamentous has been an active area of research since the last few decades as the role of cytoskeletal components, microtubules, intermediate filaments and microfilaments is very important in cell functions. During cell functions, these components undergo the deformations like bending, buckling and vibrations. In the present paper, bending and buckling of microfilaments are studied by using Euler Bernoulli beam theory with nonlocal parametric effects in conjunction. The obtained results show that the nonlocal parametric effects are not ignorable and the applications of nonlocal parameters well agree with the experimental verifications.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory

  • Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.621-631
    • /
    • 2018
  • In this paper, an exact analytical solution is developed for the analysis of the post-buckling non-linear response of simply supported deformable symmetric composite beams. For this, a new theory of higher order shear deformation is used for the analysis of composite beams in post-buckling. Unlike any other shear deformation beam theories, the number of functions unknown in the present theory is only two as the Euler-Bernoulli beam theory, while three unknowns are needed in the case of the other beam theories. The theory presents a parabolic distribution of transverse shear stresses, which satisfies the nullity conditions on both sides of the beam without a shear correction factor. The shear effect has a significant contribution to buckling and post-buckling behaviour. The results of this analysis show that classical and first-order theories underestimate the amplitude of the buckling whereas all the theories considered in this study give results very close to the static response of post-buckling. The numerical results obtained with the novel theory are not only much more accurate than those obtained using the Euler-Bernoulli theory but are almost comparable to those obtained using higher order theories, Accuracy and effectiveness of the current theory.

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수 (Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity)

  • 손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.