• Title/Summary/Keyword: Euler beam theory

Search Result 340, Processing Time 0.023 seconds

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

Analysis of a cantilever bouncing against a stop according to Timoshenko beam theory

  • Tsai, Hsiang-Chuan;Wu, Ming-Kuen
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.297-306
    • /
    • 1997
  • The bouncing of a cantilever with the free end pressed against a stop can create high-frequency vibration that the Bernoulli-Euler beam theory is inadequate to solve. An analytic procedure is presented using Timoshenko beam theory to obtain the non-linear response of a cantilever supported by an elastic stop with clearance at the free end. Through a numerical example, the bouncing behavior of the Timoshenko and Bernoulli-Euler beam models are compared and discussed.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Non-Linear Behavior of Tapered Simple Beam with a Floating Concentrated Load (변화위치 집중하중을 받는 변단면 단순보의 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentration load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastical is obtained from the final equilibrium stage. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of simple beam are derived , and solved numberically . Three kinds of tapered beam types are considered . The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam

  • Bakalah, Ebrahim S.;Zaman, F.D.;Saleh, Khairul
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic properties are considered. The method of Green's function and perturbation theory are employed to find the deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations of inhomogeneous beams in linear and nonlinear cases are also discussed.

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.