• Title/Summary/Keyword: Euler 해석

Search Result 394, Processing Time 0.027 seconds

Revised Surface Gradient Method for the Hyperbolic-Type Shallow-Water Equations on Irregular Bathymetry (불규칙 지형상의 쌍곡선형 천수방정식 해석을 위한 개선 표면경사법)

  • Kim Dae-Hong;Yi Yong-Kon;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.424-428
    • /
    • 2005
  • 본 연구에서는 임의로 변화하는 지형상에 적용시에 보존 특성이 성립하는 쌍곡선형 천수방정식 해석 기법을 개발하였다. 일반적으로 쌍곡선형의 천수방정식은 상류와 사류를 쉽고 정확하게 해석할 수 있고, 또한 Euler 방정식 해석기법을 이용한 다양한 해석기법이 개발되어 있다는 장점을 지니고 있다. 그러나 바닥지형이 변화하는 경우, 생성항과 플럭스항 사이에 수치적 해석기법 차이에서 발생하는 수치적 불균형이 발생하여 수치모형의 적용성이 현저하게 저하된다. 따라서 본 연구에서는 이와 같은 현상을 개선하기 위하여, 기존의 표면경사법을 개선한 기법을 제시하였다. MUSCL-Hancock 기법과 HLLC 근사 Riemann 기법을 이용하였으며, 플럭스항과 수치적 균형을 이루기 위한 이산화기법을 제안하였다. 모형의 검증을 위하여 정상류 상태의 상류와 사류 해석을 수행하였고, 마른바닥에서의 댐붕괴파와 수직한 지형 변화를 갖는 수로상의 서지의 진행 등과 같은 부정류에 대하여 적용하였다. 적용결과, 매우 정확하고 수치적으로 안정된 계산결과를 얻었다.

  • PDF

Dynamics Modeling and Control of a Delta High-speed Parallel Robot (Delta 고속 병렬로봇의 동역학 모델링 및 제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a simplified dynamics model, dynamics simulations, and computed torque control experiments of the Delta high-speed parallel robot. Using the typical Newton-Euler method, a simplified but accurate dynamics model with practical assumptions is derived. Accuracy and fast calculations of the dynamics are essential in the computed torque control for high-speed applications. It was found that the simplified dynamics equation is in very god agreement with the ADAMS model, and the calculation time of the inverse kinematics and inverse dynamics is about 0.04 msec. From the dynamics simulations, the cycle trajectory along the y-axis requires less peak motor torque and a lower angular velocity and less power than that along the x-axis. The computed torque control scheme can reduce the position error by half as compared to a PD control scheme. Finally, the developed Delta parallel robot prototype, half the size of the ABB Flexpicker robot, can achieve a cycle time of 0.43 sec with a 1.0kg payload.

Critical Loads of Tapered Cantilever Columns with a Tip Mass (자유단 집중질량을 갖는 변단면 캔틸레버 기둥의 임계하중)

  • Jeong, Jin Seob;Lee, Byoung Koo;Kim, Gwon Sik;Kim, Jong Ung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.699-705
    • /
    • 2005
  • This paper investigates critical loads of tapered cantilever columns with a tip mass, subjected to a follower force. The linearly tapered solid rectangular cross-sections are adopted as the column taper. The differential equation governing free vibrations of such columns, also called Beck's columns, is derived using the Bernoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters, namely, the taper type, the subtangential parameter, and the mass ratio.

Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation (강제조화운동을 이용한 SDM의 세로 및 방향 안정성 미계수 예측)

  • Lee, Hyungro;Lee, Seungsoo;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.948-956
    • /
    • 2012
  • This paper presents the computations of the longitudinal and directional stability derivatives for the SDM(Standard Dynamic Model). The static and dynamic derivatives are evaluated at once using forced harmonic oscillations in the pitch and yaw directions. For the numerical simulations, a 3-D Euler solver that uses a dual time stepping method for unsteady time accurate simulations is applied. This work investigates the variation of the derivatives in terms of the Mach number and the several motion parameters. Good agreement of the pitch and yaw stability derivatives with previously published numerical results and experimental results are observed.

Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects) (고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면))

  • Hwang, Chan-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • This paper summarizes the components of an explicit aeroelastic solver developed especially for the simulation of dynamic fracture events occurring during the flight of solid propellant rockets. The numerical method combines an explicit Arbitrary Lagrangian Eulerian (ALE) version of the Cohesive Volumetric Finite Element (CVFE) scheme, used to simulate the spontaneous motion of one or more cracks propagating dynamically through a domain with regressing boundaries, and an explicit unstructured finite volume Euler code to follow the flow field during the failure event. A key feature of the algorithm is the ability to adaptively repair and expand the fluid mesh to handle the large geometrical changes associated with grain deformation and crack motion.

A Study on Convergence Enhancement Using Preconditioning Methods in Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee, Jae-Eun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.8-17
    • /
    • 2005
  • It is well known that preconditioning methods are efficient for convergence acceleration in the compressible low Mach number flows. In this study, the original Euler equations and three differently nondimensionalized preconditioning methods are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as numerical flux discretization and time integration, respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning allows Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

Numerical Investigation of Mother Plane Interference Effect on the Supersonic Air-launched Rocket (초음속 공중발사 로켓의 모선 간섭현상 수치적 연구)

  • Kim, Young-Shin;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.17-26
    • /
    • 2005
  • Numerical investigation has been made on the aerodynamic characteristics of supersonic air-launching rocket, as a new concept launching mechanism. Parametric study on the variations of launching velocity, incident angle and mounting location of the rocket has been performed using three dimensional Euler equations. Influential factors at separating stage of the rocket were extracted through comprehensive analyses, and, the response surface models were constructed for those factors. From the study, the aerodynamic behavior of the air-launching rocket at supersonic speed and useful guidelines for the optimal mounting location of the rocket have been obtained.

Theoretical Analysis of Carbon Nanotube Actuators (탄소나노튜브 작동기의 이론적 해석)

  • Park C.H.;Park H.C.;So H.K.;Jung B.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.927-931
    • /
    • 2005
  • Carbon nanotube actuator, working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube actuator simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two single-walled carbon nanotubes. For predicting the static and dynamic characteristic parameters, the analytical model for a 3 layer bimorph carbon nanotube actuator is developed by using Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy principles. The induced displacements of the theoretical model are presented in order to investigate the performance of the carbon nanotube actuator with different control voltages. The developed model presents invaluable means for designing and predicting the performance of carbon nanotube actuator that can be used in artificial muscle applications.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

A numerical study on the flow and noise radiation in curved intake (굴곡형 흡입구에서의 유동 및 소음방사 해석)

  • Shim, In-Bo;Lee, Duck-Joo;An, Chang-Su
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.76-80
    • /
    • 2001
  • Unsteady compressible Euler equation is solved and the high-order, high-resolution numerical solver, physical boundary condition, adaptive nonlinear artificial dissipation model and conformal mapping are applied to computation of steady transonic flow and unsteady acoustics. The acoustic characteristics of axi-symmetric duct and two dimensional straight/S channel are studied and the computation results shows good agreements with linear analysis. In transonic case, local time stepping and canceling-the-residual techniques are used for convergence acceleration. The aspect of flow and acoustics in S-channel and the Pattern of noise radiation is changed by inflow Mach no. and static pressure at fan-face.

  • PDF