본 논문에서는 트렐리스 부호화된 MDPSK-OFDM의 차동검파에서 BER(bit error rate) 성능을 향상시키기 위해 다중 위상 검파를 수행한다. 제안된 비터비 디코더는 다중 위상차를 가지 메트릭으로 사용하는 슬라이딩 방식의 다중 위상 검출 방식이며 이러한 가지 메트릭을 사용하는 비터비 알고리듬을 제안한다. 본 논문에서 제안한 다중 위상 검출을 이용한 MDPSK-OFDM은 대역폭과 전력의 효율성을 감소시키지 않고 같은 SNR에서 BER 성능을 향상시킬 수 있다는 것을 보여준다. 또한 제안된 디코더 방식과 알고리듬은 다중 반송파뿐만 아니라 전통적인 단일 반송파 변조에도 사용됨 수 있다.
Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.
This excerpt delineates a quantitative measure of relationship between a research title and its respective abstract extracted from different journal articles documented through a Korean Citation Index (KCI) database published through various journals. In this paper, we propose a machine learning-based similarity metric that does not assume normality on dataset, realizes the imbalanced dataset problem, and zero-variance problem that affects most of the rule-based algorithms. The advantage of using this algorithm is that, it eliminates the limitations experienced by Pearson correlation coefficient (r) and additionally, it solves imbalanced dataset problem. A total of 107 journal articles collected from the database were used to develop a corpus with authors, year of publication, title, and an abstract per each. Based on the experimental results, the proposed algorithm achieved high correlation coefficient values compared to others which are cosine similarity, euclidean, and pearson correlation coefficients by scoring a maximum correlation of 1, whereas others had obtained non-a-number value to some experiments. With these results, we found that an effective title must have high correlation coefficient with the respective abstract.
음악은 서로 다른 높이와 길이를 갖는 음표들을 주어진 박자 안에서 리듬성을 갖도록 나열한 패턴이기 때문에 음악의 선율정보는 시간의 흐름에 따라 정보 값을 갖는 시계열 데이터로 변환할 수 있다 따라서 본 연구에서는 음악의 특성을 유지하도록 선율정보를 정규화와 보정과정을 거쳐 시계열 데이터로 변환하고 유클리드 거리함수를 이용하여 선율정보간의 유사도를 계산하며, 유사성을 갖는 선율들을 클러스터링하여 각 클러스터의 대표성을 갖는 선율을 주제선율로서 추출한다. 그리고 추출된 주제선율로 다차원색인 기법인 M-tree를 이용하여 주제선율색인을 구성한다. 사용자 질의에 대한 검색과정에서도 색인 구성단계와 같은 과정으로 사용자 질의를 시계열 데이터로 변환하여 검색을 한다. 또한, 본 연구에서는 주제선율색인을 이용하여 내용기반 음악 검색을 실시하는 프로토타입 시스템을 개발하여 제안된 주제선율색인 구성기법의 실효성을 시험하였다. 실험결과에 따르면, 주제선율색인을 이용하면 원하는 음악 정보를 적은 공간을 사용하여 빠르고 정확하게 검색할 수 있음을 알 수 있다.
본 논문에서는 파형 신호에서 패치를 추출하고 이를 패치 그래프로 구성한 다음, 이로부터 대표적인 다양체 임베딩 방식인 컴뮤트 타임 임베딩 기법을 구현하고, 이의 특성을 분석한다. 특히 음성 신호나 악기 음 등, 시간에 따라 스펙트럼이 가변적인 신호를 임베딩하면 스펙트럼의 변화에도 불구하고 그 신호 고유의 기하 구조를 생섬함을 실험으로 확인한다. 다양체 임베딩은 비선형 공간에 놓여 있는 고차원 데이터를 저차원 공간으로의 효율적인 맵을 가능하게 하지만 그래프 구성에 이용된 데이터에 대한 정보만 알 수 있고 그렇지 않은 데이터(out-of-sample data)에 대해서는 정보를 얻기 어렵다. 따라서 다양체 임베딩은 데이터 클러스터링에 적절히 적용 가능하지만, 훈련 과정을 통해 얻은 정보를 기초로 유추 기능이 요구되는 인식 등에는 응용하기 어려운 제약이 따른다. 이를 해결하기 위하여 본 논문에서는 다양체 임베딩이 인식 분야에도 적용 가능하도록 새로운 알고리즘을 제안하고 악기 음 분류 실험을 통하여 그 특성을 분석한다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
본 논문에서는 임의의 주기적인 현상이나 특성은 위상구조와 밀접한 관련이 있음을 추론하고 이를 실험적으로 확인한다. 실험대상으로 주기적 특성이 있는 다양한 악기음을 선택하여 이를 유클리드 공간에 임베딩하고 이로부터 호몰로지 군을 계산하여 위상특성을 분석한다. 이를 위하여, 파형신호에서 추출한 패치모음을 패치 그래프로 구성한 다음, 대표적인 다양체 학습 방식인 통근시간 임베딩 기법을 이용하여 기하구조로 변환한다. 스펙트럼이 시간에 따라 가변적인 파형신호를 통근시간 임베딩할 때, 그에 따라 생성되는 기하구조는 변화하지만 그 신호 고유의 내재된 위상구조는 거의 변하지 않는다. 본 논문에서는 임베딩 데이터의 일부를 표본화하여 단순 복합체를 구성한 다음 이로부터 호몰로지를 계산하여 임베딩 기하구조의 위상특성을 분석하고, 이의 활용방안을 논의한다.
Purpose: Recently, research has continued to predict the time of failure of the facility through measurement data obtained by attaching a sensor to the facility. However, depending on the facility, it may be difficult to attach a sensor. The purpose of this study is to propose a power generation maintenance plan system based on failure record data obtained from Continuous Ship Unloader, one of the facilities that is difficult to attach sensors. Methods: This study uses data collected from 2012 to 2022 from the 'CSU-1B' model among Continuous Ship Unloader operated by Korea Midland Power Co., LTD. By fitting fault record data to the Weibull distribution, appropriate maintenance cycles and ranges for each target facility subsystem are derived. In addition, maintenance group between subsystems is selected through Euclidean distance, a metric often used for time series data similarity. Through this, a system for establishing an maintenance plan for power generation facilities is proposed. Results: The results of this study are as follows. For the 17 subsystems of the Continuous Ship Unloader, proper maintenance cycles and ranges were determined, and a total of four maintenance groups were chosen. This resulted in the creation of an power generation maintenance plan system and the establishment of an maintenance plan. Conclusion: This study is a case study of power generation facilities. We proposed a maintenance plan system for Continuous Ship Unloader among power generation facilities.
기존의 연구에서는 홍채 특징 추출을 위해 검출된 원형 홍채 영역을 직교 사각형 홍채 영상으로 스트레칭 및 보간 하는 작업을 수행하였다. 이러한 경우 실제 홍채 특징이 왜곡되는 현상이 발생한다. 본 논문에서는 홍채 영상의 왜곡 없이 정확하게 홍채 특징을 추출할 수 있는 방법을 제안한다. 본 연구는 다음과 같은 세 가지 장점을 가지고 있다. 첫 번째, 극좌표 원형 영상 방식을 이용하여 기존의 직교 사각형 영상 방식보다 인식 성능 면에서 우수하다는 점을 해밍거리, 코사인거리, 유클리디안 거리의 3가지 metric을 이용하여 실제로 비교해본 점이며, 두 번째, 최근 홍채인식 연구의 주된 흐름인 품질이 좋지 못한 Non-Ideal 홍채 영상 중 하나의 형태인 홍채 카메라의 중심을 쳐다보지 않은 상태에서 취득된 홍채 영상의 동공과 홍채 중심 위치가 많이 차이나는 경우에 동공과 홍채 경계를 각각 원형 경계 검출로 경계를 찾은 후, 영상에 대한 보간(interpolation)없이 극좌표 원형 홍채 영상에서 직접 특징을 추출함으로써 홍채인식의 성능을 향상한 점이다. 마지막 세 번째는 극좌표 원형방식을 사용할 경우 발생하는 중복 포인트 문제를 해결한 것이다. 이러한 중복 포인트들은 같은 위치에서 여러 홍채 특징을 추출하는 현상을 야기함으로서 저주파 홍채 특징을 생성하는 결과를 낳게 된다. 즉, 홍채 특징의 신호 변화가 실제로 존재함에도 불구하고 같은 위치에서의 여러 홍채 특징들을 추출함으로써 파형변화가 적은 비슷한 홍채 신호를 만들게 된다. 중복 포인트가 주기적으로 많이 발생하는 동공부근의 첫 번째 트랙에 가버필더 적용 시 필터의 주파수를 작게 하여 중복 포인트에 의해 발생된 저주파 홍채 신호를 정확하게 추출하게 함으로써 홍채 인식 성능을 향상 시킨 점이다. 실험 결과, 기존의 직교 사각형 영상 기반 방식이 EER 0.29% 와 d'값 5.8 이였으며, 제안하는 극좌표 원형 방식이 EER 0.16% 와 d'값 6.4로 인식 성공률이 보다 높음을 알 수 있었다.
사물인터넷이 4차 산업혁명을 주도할 새로운 기술로 각광받고 있으며, 이미 많은 기술과 제품들이 발표되어 인간의 삶의 질을 높이는 데 많은 기여를 하고 있다. 본 논문에서는 건물의 엘리베이터 등에서 얼굴 검출 및 얼굴 인식에 사용할 수 있는 시스템을 개발한다. 얼굴 검출 시스템은 하르 직렬 분류기를 사용하며, 얼굴 인식 시스템에는 수행 시간을 줄이기 위하여 본 논문에서 파이썬 언어로 구현된 주성분 분석(PCA)이 얼굴 인식을 위한 고유 얼굴(eigenface) 계산에 사용된다. 데이터베이스에 저장된 얼굴과 얼굴 검출 시스템의 결과로부터 얼굴을 인식하기 위하여 SVM 또는 유크리디안 측정이 사용된다. 제안된 시스템은 OpenCV를 사용하여 라즈베리파이 3에 구현된다. 본 논문에서 구현된 주성분 프로그램의 성능을 구하기 위하여 기존의 주성분 프로그램과 비교하여 얼굴 인식율과 수행시간을 비교하였다. 성능 평가를 위하여 ORL 얼굴 데이터베이스에서 40명의 얼굴에 대하여 각각 10 개의 이미지를 이용하여 학습에 200, 테스트에 200개의 이미지를 사용하였다. 본 논문에서 제안된 PCA와 유클리디안 측정을 이용한 경우 약 93%, SVM의 경우 약 96% 이상의 얼굴 인식률을 얻었다. 그러나 수행시간은 본 논문에서 구현된 PCA를 사용할 경우 약 0.11초, 기존 PCA의 경우 약 1.1초로 약 1/10로 수행 시간을 줄일 수 있었다. 그러므로 본 논문에서 개발된 시스템은 실시간 결과가 필요한 보안 시스템, 엘리베이터 모니터링 시스템 등에 적용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.