• Title/Summary/Keyword: Ethylene ethyl acrylate

Search Result 15, Processing Time 0.022 seconds

Copolymerization of 4′-vinylbenzo-15-crown-5 with Di(ethylene glycol) Ethyl Ether Acrylate

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2002
  • Radical copolymerization behavior of 4'-vinylbenzo-15-crown-5, a vinyl monomer having a pendant 15-membared crown ether unit (VCE) with di(ethylene glycol) ethyl ether acrylate (DEGEEA) was carried out in toluene solution using 2,2-azobisisobutyronitrile (AIBN) as an initiator. The copolymers were characterized by means of FT-IR, $^1{H-NMR}$, and $^{13}{C-NMR}$ . The reactivity ratio of VCE and DEGEEA, determined by Fineman-Ross and Kelen-Tudos method, gave values 0.55 for VCE, and 0.11 for DEGEEA respectively.

Synthesis and Characterization of Poly(urethane-ethyl acrylate) Hybrid Emulsion (폴리(우레탄-에틸 아크릴레이트) 혼성 에멀젼의 합성과 물성 비교 연구)

  • Cheong, In Woo;Lee, Jong Kil;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2005
  • Poly(urethaneethyl acrylate) hybrid emulsions were synthesized to improve their thermomechanical and solvent resistance properties. In the synthesis, dimethylol propionic acid was used to impart hydrophilicity to the hybrid polymers, and ethyl acrylate monomer was added to the polyurethane prepolymer after neutralization with triethylamine. After dispersion of the neutralized prepolymer, chain extension was carried out with ethylene diamine. Consequently, poly(urethaneethyl acrylate) hybrid emulsion was prepared via soap free emulsion polymerization of ethyl acrylate with reduction-oxidation initiator couple of t-butyl hydroperoxide/sodium bisulfite at $50^{\circ}C$. Tehsile strength, 100% modulus, elongation, and solvent-resistance properties of the hybrid emulsion were measured and compared with those of polyurethane homopolymer, poly(ethyl acrylate) homopolymer, and simple blended samples.

Synthesis of 4o-vinylbenzo-15-crown-5 and its copolymerization behavior with Di(ethylene glycol) ethyl ether acrylate (4′-vinylbenzo-15-crown-5의 합성과 Di(ethylene glycol) ethyl ether acrylate와의 라디칼 공중합)

  • Soukil Mah;Jin, Long-Yi;Kyuchan Han
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.195-198
    • /
    • 2002
  • Poly(crown ether)s as a functional polymer materials have powerful and selective complexation properties with a large number of metal cations and have advantage of facility of their recovery and modification of their complexation properties in contrast to their monomeric analogues. Poly(crown ether)s having pendant macrocyclic groups can easily form 2:1-type crown ether ring-to-cation complexes with particular metal ions which are a little larger than the cavity of the crown ether ring. (omitted)

  • PDF

Effect of strain on the morphology of CNT reinforced polymer composite (CNT가 강화된 고분자 복합체의 모폴로지에 대한 인장변형의 영향)

  • Kook, J.H.;Kwak, S.K.;Kim, M.J.;Yang, J.S.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.164-165
    • /
    • 2006
  • Carbon nanotube(CNT)-reinforced poly(ethylene-co-ethyl acrylate)(EEA) nanocomposites were prepared by melt mixing with a Haake internal mixer. The CNT loading was vaned from 0 to 20 wt%. The changes m CNT dispersion and shape were investigated with FE-SEM observation with and without the Tensile strain of 40%. The CNT was protruded over the fracture surface upon Tensile strain, which is a very interesting behavior.

  • PDF

Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites (폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성)

  • Kook, Jeong Ho;Jeong, Kwang-Un;Yang, Jong Seok;Park, Dae Hee;Go, Jin Hwan;Nah, Changwoon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around $40^{\circ}C$ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.

Effects of Blend Composition and Compatibilizer on the Mechanical Properties of Polypropylene/Acrylonitrile-Butadiene-Styrene Blends (블렌드 조성과 상용화제가 폴리프로필렌/ABS 블렌드의 기계적 물성에 미치는 영향)

  • Park, Jung-Hoon;Sung, Yu-Taek;Kim, Woo-Nyon;Hong, John-Hee;Hong, Byeong-Kwon;Yoo, Tae-Wook;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • Polymer blends containing polypropylene (PP) with compatibilizers were prepared using twin screw extruder. Physical properties were investigated using universal test machine (UTM) and Izod impact tester. In the PP/acrylonitrilebutadiene-styrene (ABS) blends, mechanical strength was increased with the addition of PP-g-styrene acryloritrile (PP-g-SAN) compatibilizer, and the ductility was increased with the addition of ethylene-ethyl acrylate-maleic anhydride (E-EAMAH-g-SAN) compatibilizer. For the PP/ABS/ polycarbonate (PC)/Nylon-6,6 blends, impact strength was increased with the addition of ethylene glycidylmethacrylate (E-GMA compatibilizer) up to 0.5 phr. In the case of the PP/ABS/PC/Nylon-6,6/poly(methyl methacrylate) (PMMA)/poly(oxymethylene) (POM)/poly(vinyl acetate) (PVC)/poly(butylene terephthalate) (PBT) blends, mechanical properties were increased by the complex compatibilizing effects of PP-g-SAN, E-EA-MAH-g-SAN and E-GMA, respectively.

A Study on the Property of Semiconductive Shield Composite through Karl Fischer Method in Power Cable (Karl Fischer를 통한 전력케이블용 반도전 Composite 특성 연구)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.187-188
    • /
    • 2008
  • In this paper, we have investigated water content of semiconductive shield materials for power cables, EEA(Ethylene Ethyl Acrylate) is used polymer matrix. And filler is used CNT(Carbon Nanotube) and CB(Carbon Black). EEA, CNT and CB is favor moisture. In case of EEA, it has polyolefin resin that strong polarity combination. To research water content, experimental method used KF(Karl Fischer). KF method is Electrochemical titration based on chemical reaction. As a result, specification by KEPCO(Korea Electric Power Corporation) is lower than 800ppm. CNT and CB ratio of 80 versus 20 is best specimen that had lowest moisture content. It seem likely to increase crosslinking rate, CNT between CB.

  • PDF

A Study on the Thermal Properties of CNT Reinforced Semiconductive Shield Materials for Power Cables (CNT를 첨가한 전력케이블용 반도전 재료의 열적특성에 관한 연구)

  • Yang, Hoon;Kook, Jeong-Ho;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1062-1067
    • /
    • 2007
  • In this paper, we have investigated thermal properties of semiconductive shield materials for power cables. EEA (Ethylene Ethyl Acrylate) was used for base polymer and TGA (Thermal Gravimetric Analysis) and AFM (Atomic Force Microscope) were investigated with various carbon black and CNT (carbon nanotube) contents. When CNT reinforced composites and conventional composite were investigated with TGA, we knew that thermal properties of CNT reinforced composite were better than them of conventional composite. To investigate roughness, we used AFM. Before and after aging, AFM was applied and after aging, roughness was increased. As a result, suitable CNT and CB(carbon black) content is CNT:CB=50:50.

Density and Smoothness Measurements of Ethylene Ethyl Acrylate/Carbon nanotube Composites (에칠렌 에칠 아크릴레이트 /탄소나노튜브 복합체의 밀도와 분산성 측정)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Sung, Baek-Ryong;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1410-1411
    • /
    • 2006
  • To improve density and smoothness of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. They were produced as sheets after pressing for 20 minutes at $180[^{\circ}C]$ with a pressure of $200[kg/cm^2]$. The content of conductive carbon black and Carbon Nanotube were 30[wt%] and 2-6[wt%] respectively. As a result the smoothness was measured by JSM-6400.

  • PDF