• Title/Summary/Keyword: Ethoprophos

Search Result 36, Processing Time 0.025 seconds

Distribution characteristics of organophosphorous pesticides in Asan Bay, Korea (아산만 해역의 유기인계농약 분포특성)

  • Choi Jin-Young;Yang Dong-Beom;Ju Hyo-Jung;Kim Kyung-Tae;Hong Gi-Hoon;Shin Kyoung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.176-186
    • /
    • 2006
  • Distribution characteristics of organophosphorous pesticides(OPs) in water and suspended particles were studied in Asan Bay, Korea, from June 2004 to October 2005. 28 organophosphorous pesticides could be detected in Asan Bay during this study. The most commonly and abundantly measured OPs in the surface waters were IBP (max=$6,343.7ng\;l^{-1}$). DDVP, diazionon, ethoprophos and methidathion were also observed at relatively high concentrations. Their maximum concentrations exceeded $100ng\;l^{-1}$ in almost every month. Malathion, mevinphos, ph orate and chlorfenvinphos were also detected at relatively high concentrations. Many OPs more frequently appeared in summer than in winter due to the intensive application of pesticides in summer months. The concentration of OPs generally decreased with increasing distance from the mouth of Asan Bay. This result implies progressive dilution of these pesticides in the marine environment. Measured concentrations of diazinon were well below $20,000ng\;l^{-1}$ which is a limit set by the seawater quality standard of Korea. The concentrations of malathion and parathion in the surface waters of Asan Bay did not exceed the seawater quality standard of Korea($250,000\;and\;60,000ng\;l^{-1}$ respectively). OPs adsorbed on suspended particles were also studied. DDVP, phorate, stirofos, EPN, azinphos-methyl and IBP had higher adsorption capacity onto suspended particles than other pesticides. Calculated pesticide-particle adsorption coefficient($K_d-particle$) for samples collected in Asan Bay were closely related to the reported pesticides-soil adsorption coefficient ($K_d-soil$).

  • PDF

Pesticide Multiresidues Analysis of Environmental-friendly Agricultural Soils by the Complex Cleanup Method of Accelerated Solvent Extraction (ASE) and Solid Phase Extraction (SPE) (ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석)

  • Moo, Kyung-Mi;Park, Jin-Woo;Lee, Young-Guen;Choi, Young-Whan
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.73-80
    • /
    • 2011
  • Fifty substances of pesticide were selected for analysis through the historical investigation of pesticides detected from environmental-friendly agricultural soil, and the environmental-friendly agricultural soils in Gyeongnam area were collected and then were accepted Anve (accelerated solvent extraction) and SPve (solid-phase extraction) as multiresidue extraction and clean up methods suitable to the soils. The pesticide residues were analyzed by using GC/vCD/NPD, HPLC/UV/FL, GC/MSD, or HPLC/MSD. 50 kinds of pesticides for the soils were an average of 95.5% from retrieval ratio of the 72 to 118% range, and the average of 3.0% for CV (%). Among 40 samples of soil, 20 components were detected from pesticide residues of 21 samples, and average amounts detected for these components were 0.035 for endosulfan, 0.043 for ethoprophos, 0.020 for chlorpyrifos, 0.023 for chlorfenapyr, 0.047 for flufenoxuron, 0.070 for fenvalerate, 0.266 for cypermethrin, 0.016 for lufenuron, 0.022 for bifenthrin, 0.025 for fenobucarb/BPMC, 0.043 for difenoconazole, 0.059 for fenarimol, 0.020 for kresoxim-methyl, 0.026 for tetraconazole, 0.039 for isoprothiolane, 0.017 for iprobenfos, 0.014 for nolrimol, 0.156 for fluquinconazole, 0.047 for tebuconazole, and 0.045 mg/kg for oxadiazon. Therefore it is infered that the establishment of pesticide residues limit for environmental-friendly agricultural soil is needed as soon as possible.

Cloning and Site-Directed Mutagenesis of Musca domestica Acetylcholinesterase for Enhancing Sensitivity to Organophosphorus and Carbamate Insecticides

  • Kim, Chung-Sei;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1760-1772
    • /
    • 2006
  • Mature acetylcholinesterase (AChE) gene (gm, 1,836 bp) was cloned from the housefly and successfully expressed in the E. coli CodonPlus (DE3) RIL system (GM-E, 72 kDa) with a yield of 1,630 mU/g fresh cells. Using the gm, 10 kinds of mutants were constructed and expressed for enhancing sensitivity to insecticides. The sensitivity of these mutants to five kinds of organophosphate (OP) and three carbamate insecticides was investigated by measuring the apparent bimolecular inhibition constant ($k_i=k_2/K_d$). Surprisingly, the sensitivity of quadruple mutant IGFT was enhanced as much as 7-fold for acephate, 164-fold for demeton-S-methyl, 484-fold for dichlorvos, 523-fold for edifenphos, 30-fold for ethoprophos, 30-fold for benfuracarb, 404-fold for carbaryl, and 107-fold for furathiocarb, compared with that of GM-E, although the sensitivity of each single point mutant was slightly increased. These mutational studies indicated that (i) contradictory to Walsh et al. [39], the residue 327 is the important key residue for enhancing sensitivity as much as the residue 262, (ii) the residue 82 and additional residues of 234, 236, and 585 are also important, and (iii) sensitivity was cooperatively accelerated as the number of strategic mutations increased.

Development of Fenvalerate Resistance in the Diamondback Moth, Plutella xylostela Linne (Lepidoptera : Yponomeutidae) and its Cross Resistance (배추좀나방의 Fenvalerate에 대한 저항성 발달과 교차저항성)

  • 김길하;서영식;이준호;조광연
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.194-200
    • /
    • 1990
  • The diamondback moth (Plutella xylostella L.) was selected over 24 generations with fenvalerate. The resulting resistant strain was tested to study development of insecticide resistance and cross resistance to some insecticides in the laboratory. Insecticide resistance of diamondback moth at the 24th generation devleoped 66.2 fold compared to the parent strain for fenvalerate. The fenvalerate selected strain exhibited 145 fold, a high level of cross resistance to deltamethrin, and also showed 17.4-45.0 fold cross resistance to alphamethrin, cypermethrin, fenvalerate, permethrin, and tetramethrin in the pyrethroid insecticides. The fenvalerate selected strain showed 2.5-4.3 fold, low cross resistance to diazinon, dichlorvos, EPN, BPMC, cabaryl, and methomyl. However, it did not show cross resistance to acephate, fenitrothion, phenthoate, and carbofuran.

  • PDF

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

Application of Solid Phase Microextraction to the Analysis of Pesticides in Vegetables

  • Cho Tae-Hee;Kang Hee-Gon;Kim Tae-Rang;Chang Min-Su
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2001.10a
    • /
    • pp.171-174
    • /
    • 2001
  • Solid phase micro-extraction (SPME), a solvent-free, rapid and inexpensive method for the extraction of organic compounds from aqueous sample matrices, was evaluated for determination of the 120 pesticides in vegetables such as crown daisy, perilla leaf, leafy lettuce and to mato. The analysis conditions were chosen for the SPME method: 15 min of immersion of the PDMS fiber in 10 ml of the solution with stirring at 1,000 rpm. The recovery tests were carried out in triplicate. The range of recoveries was 0-142% for organochlorine pesticides and $4.9\sim200\%$ for organophosphorus pesticides. The recoveries were very low in the pesticide groups with low solubility in water. The recoveries became lower in proportion to the interference materials in vegetables. The recovery in tomato was relatively higher than that in perilla Ie af and crown daisy. The recovery values obtained by SPE and SPME were compared. In leaf y lettuce, recovery obtained by SPE method ranged from $58.1\%\;to\;136.1\%$ and recovery by SPME ranged from $9.6\%\;to\;176.3\%$ In organophosphorus pesticides. The recovery in SPME method was satisfactory with $136\%$ for ethoprophos, $119\%$ for methidathion and $113\%$ for diazinon. Meanwhile, recovery of EPN, phenthoate and 2,4-DDT revealed relatively low value of $38\%,\;41\%\;and\;3.4\%,$ respectively. However, most of pesticides applied to SPME method sho wed constant recovery and precision. From these results, it can be concluded that solid phase micro-extraction might be an appropriate method for the screening test of pesticides in vegetables.

  • PDF

Evaluation of Nematicidal Activity of Streptomyces yatensis KRA-28 against Meloidogyne incognita

  • Park, Eun-Jae;Jang, Hyun-Jae;Park, Chan Sun;Lee, Seung-Jae;Lee, Soyoung;Kim, Kang-Hoon;Yun, Bong-Sik;Lee, Seung Woong;Rho, Mun-Chual
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.700-707
    • /
    • 2020
  • The root-knot nematode (Meloidogyne incognita) is an important pathogen in crop cultivation, however, few methods are available to control this parasitic roundworm. In this study, the nematicidal effects of approximately 30 Streptomyces strains isolated from soil samples of Mt. Naejang (Korea) were tested against Meloidogyne incognita, and the culture broth of the strains KRA-24 and KRA-28 exhibited approximately 75% and 85% insecticidal activity, respectively, in in vitro assays. In in vivo pot experiments, these strains reduced the number of nematodes in the soil and the number of egg masses in the roots of red peppers. The two strains also survived in the presence of insecticidal agents (0.1 to 3.0%) such as fosthiazate, ethoprophos and terbufos when they were used in parallel. The mixture of KRA-24 or KRA-28 culture broth and fosthiazate exhibited nematicidal effects that were similar to those observed when KRA-24 or KRA-28 were used alone. Our results clearly suggest that the Streptomyces strains KRA-24 and KRA-28 should be promoted as a biocontrol agent against Meloidogyne incognita.

Tendency of Residual Pesticides in Commercial Agricultural Products in Gyeongsangbuk-Do Area (the year 2004~2008) (경상북도 내 유통 농산물 중의 잔류농약 동향 (2004~2008년))

  • Yang, S.T.;Son, J.C.;Jung, K.H.;Lee, C.I.;Kim, M.J.;Park, H.S.;Cha, Chun-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.338-347
    • /
    • 2009
  • The content of residual pesticides in commercial agricultural products in Gyeongsangbuk-Do area was investigated for 5 years extending the year 2004 through 2008. The detection rates of residual pesticides in agricultural products by year were similar in range of 11.6~16.4%. But the violation rates showed lower values in the last years from 4.5% of the year 2004 to 0% of the year 2007. The highest residual concentration of each pesticide detected in commercial agricultural products was investigated by year. That is, in the year 2004 and 2005, chlorpyrifos, chlorothalonil, diazinon, endosulfan, ethoprophos, fenarimol and procymidone were detected over the tolerance in kale, parsley, celery, chard and lettuce, and in the year 2006, permethrin in the soybean and peanut. The detection rate and violation rate of pesticides were highly increased in the order of the endosulfan, chlorpyrifos, procymidone, chlorfenapyr, fenitrothion, imazalil, isoprothiolane, methidathion and permethrin. The detection rate and violation rate of pesticides were increased after August every year.

Monitoring of Residual Pesticides in Commercial Agricultural Products in Korea (국내 유통 농산물의 농약 잔류실태 모니터링)

  • Kim, Hee-Yeon;Park, Hyoung-Joon;Lee, Jin-Ha;Gwak, In-Shin;Moon, Hyung-Sil;Song, Mi-Hye;Jang, Young-Mi;Lee, Myoung-Sook;Park, Jong-Seok;Lee, Kwang-Ho;Yoon, Sang-Hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.237-245
    • /
    • 2007
  • We tested for residual pesticide levels in agricultural products purchased from 5 provinces within the middle region of Korea during 2006. A Total of 488 samples of 23 different types of agricultural products were analyzed by GC/MS, GC-NPD, and LC/MS/MS. We used multi-analysis methods to analyze for 231 different pesticide types; a single residual pesticides were detected in 92 samples (18.9%), of which 9 samples (1.9%) exceeded the Korea Maximum Residue Limits (MRLs). we detected pesticide residue in more than 50% of the pepper leaf and welsh onion samples. For the welsh onions, 16 among the 30 analyzed samples contained pesticide residue, and 4 samples exceeded the Korea MRLs. Among the 234 kinds of pesticides we tested for, 42 were detected, and 21 of them were detected more than twice. Six pesticide residue types, including cypermethrin, iprodione, fludioxonil, ethoprophos, flutolanil, and lufenuron, exceeded the MRLs. No residual pesticides were detected in 396 of the samples (81.1%), and the residual pesticide levels in 83 samples (17.0%) were lower than the Korea MRLs, indicating that 98.1% of the samples were relatively safe.

Probabilistic Exposure Assessment of Pesticide Residues in Agricultural Products in Gyeonggi-do (경기도내 유통 농산물 중 잔류농약의 확률론적 노출평가 연구)

  • Do, Young-Sook;Kim, Jung-Boem;Kang, Suk-Ho;Kim, Nan-Young;Eom, Mi-Na;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2013
  • A probabilistic exposure assessment was performed on the monitoring data of pesticides were assessed in agricultural products in Gyeonggi-do from 2006 to 2010. Chlorothalonil, chlorpyrifos, dicofol, endosulfan, EPN, ethoprophos, fenitrothion, methidathion, phenthoate and tebupirimfos were assessed. For this assessment, we used Monte Carlo simulation software and the distribution of concentration and intake were assumed to lognormal distribution by inputting mean and standard deviation. The hazard index (HI, %ADI) of average value and the $95^{th}$ percentile based on a probabilistic method were usually lower than those by a deterministic one. For the whole population, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile showed 0.05~0.70% and 0.11~1.94%, respectively. When nondetects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 0.41~4.42% and 0.98~13.81%. For only consumers, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile were 1.24~10.16% and 3.72~33.81%, respectively. When non-detects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 3.43~18.26% and 9.45~54.99%, respectively. Methidathion had highest values when both of 0 and 0.005 were assigned to non-detecs data for consumers only. This study showed that agricultural products in Gyeonggi-do were safe because they had less than 100 of HI (%ADI) based on probabilistic exposure assessment.