• Title/Summary/Keyword: Ethanol Production Process

Search Result 226, Processing Time 0.019 seconds

Studies on the Microbial Utilization of Agricultural Wastes (Part 11) production of Ethanol and Xylose by Simultaneous Hydrolysis-Fermentation Using Cellulases and Yeast (농산폐자원의 미생물학적 이용에 관한 연구 (제11보) 섬유질자원에서 Ethanol 및 Xylose 의 생산)

  • Kim, Byung-Hong;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 1979
  • Ethanol and Xylose were produced from cellulosic agricultural waste such as rice straw and corn cob by a single-step simultaneous hydrolysis-fermentation process utilizing semi-solid culture of Trithoderma as enzyme source and Saccharomyces yeast. By this process all the hexoses prduoced by the enzyme were converted to ethanol leaving pentoses which are not fermented by the yeast. By processing 50 g of rice straw, 18 ml of ethanol and 2.7 g of xylose were produced and 50 g corn cob produced 3.8 ml of ethanol and 10.8 g of xylose. Alkali-treatment of rice straw showed little effects on the productivities of ethanol and xylose. The possible reasons are discussed.

  • PDF

Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum (Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 중금속의 영향)

  • Im, Hongrae;Kwon, Rokgyu;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-428
    • /
    • 2020
  • In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.

Effect of Medium Composition on Cell Growth and Bioethanol Production in Clostridium ljungdahlii Culture (Clostridium ljungdahlii 배양에서 배지 조성에 따른 균주 성장과 바이오에탄올 생산에 대한 영향)

  • Ahn, Bohye;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2018
  • In this work, effect of the culture medium composition on the fermentation process of Clostridium ljungdahlii, which is acetogenic bacteria to product ethanol from synthesis gas, was examined to improve the microbial growth and ethanol production. Components of the culture medium such as yeast extract, fructose, $NH_4Cl$, and $K_2HPO_4$ were selected as influence factors for the cell growth and ethanol production. As the concentration of yeast extract increased, both of the cell growth and ethanol production increased. And the ethanol productivity was the highest at an yeast extract of 0.05 g/L, which is lower than that of base medium. As the concentration of fructose increased, the cell growth increased, but the ethanol production decreased when the concentration of fructose was higher than that of base medium (5 g/L). In an experiment with the yeast extract of 5 g/L, produced ethanol concentration was the highest (0.297 g/L) when fructose concentration was 5 g/L, however, the specific ethanol productivity was higher (0.281 g/g DCW) when the fructose was not added due to very low cell mass. The cell growth and ethanol production were not significantly influenced by $NH_4Cl$ concentration, however the growth inhibition was observed at a 30 g/L of $NH_4Cl$. When the concentration of $K_2HPO_4$ increased, both of the cell growth and ethanol production increased. In experiments with $NH_4Cl$ and $K_2HPO_4$, specific ethanol productivities were higher when the low concentration of yeast extract was used.

Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.467-479
    • /
    • 2021
  • Abstract: A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels (과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.619-623
    • /
    • 2014
  • The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Optimal Strategy for Ethanol Production in Repeated Fed-batch Operation Using Flocculent Sacchromyces cerevisiae (응집성 Sacchromyces cerevisiae 를 이용한 반복 유가식 ethanol 생산에서의 최적 운전전략)

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Seo, Yong-Chang;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • We investigated the optimal strategy for ethanol production using flocculent Sacchromyces cerevisiae ATCC 96581. Considering the characteristic of flocculent yeast, a repeated fed-batch ethanol fermentation was designed, in which non-sterile glucose powder was fed every 12 hours and, after cell flocculation, new feeding medium was exchanged every 24 or 36 hours. We particularly compared this fermentation process with those when cell flocculation was not carried out. Finally, the maximal total ethanol production was 825 g-ethanol during 120 hours, in which the time interval of withdrawal-fill of feeding medium was 24 hours and cell flocculation was carried out.

Studies on the Microbial Utilization of Agricultural Wastes (Part 13) Optimization of Simultaneous Hydrolysis-Fermentation for Ethanol Production from Rice Straw (농생폐자원의 미생물학적 이용에 관한 연구 (제13보) Ethanol 생산을 위한 동시당화-발효조건의 검사)

  • Lee, Jung-Yoon;Kim, Byung-Hong;Bae, Moo;Kim, Sung-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.71-75
    • /
    • 1981
  • Studies were made to optimize the simultaneous hydrolysis-fermentation (SSF) process for the production of ethanol from rice straw. Trichoderma sp. KI 7-2 was selected to produced cellulase by solid culture for SSF. Ethanol production was highest when the SSF process utilized koji culture of the fungus grown on a medium of wheat bran-rice straw 3 : 2 mixture with moisture content of 50% adjusted to pH 4.5 for 7 days as the enzyme source. It was found that pretreatment of the substrate is not necessary. To ferment 1g of rice straw by SSF 2.47 units of cellulase were required, and the initial yeast concentration of 2.5$\times$10$^{7}$ cell/$m\ell$ was found to be sufficient. Optimum pH and temperature for the process were 4.5 and 4$0^{\circ}C$, respectively. It was also found that higher ethanol concentration in the broth can be obtained by the addition of substrate or substrate and enzyme to SSF broth.

  • PDF

Biomass Production of Saccharomyces cerevisiae KFCC 10823 and Its Use in Preparation of Doenjang

  • Yoo, Jin-Young;Kim, Hyeon-Gyu;Kwon, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 1997
  • An ethanolic fermentation process was developed for preparing Doenjang with high ethanol. Higher and efficient viable cell production of salt-tolerant ethanolic yeast is a prerequisite for the successful commercial-scale process of ethanol production during Doenjang fermentation. Culture conditions of salt-tolerant yeast, S. cerevisiae KFCC 10823, was studied in terms of the effect of several environmental and nutritional factors. Viable cell numbers were the highest in a medium containing the following components per liter of water: soysauce, 300ml; dextrose, 50 g; beef extract, 5 g; yeast extract, 5 g; $KH_2PO_4$, 5 g; NaCl, 50 g. The optimal culture conditions of S. cerevisiae KFCC 10823 were pH 5.5, $25^{\circ}C$, 200 rpm and 0.5 vvm. Yeast viability during batch fermentation was gradually decreased to a level less than $90{\%}$ after 35 hours. The maximum cell number was $2.2{\times}10_7$ cells/ml at the optimal condition. Doenjang prepared with ethanolic yeast was ripened after 45 days at $30^{\circ}C$. This Doenjang contains 470 mg% of amino nitrogen and 2.5% ethanol. The shelf-life at $30^{\circ}C$ was theoretically estimated as 444 days.

  • PDF

Cold Ethanol Fractionation and Heat Inactivation of Hepatitis A Virus During Manufacture of Albumin from Human Plasma

  • Kim, In-Seop;Park, Yong-Woon;Lee, Sung-Rae;Sung, Hark-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.65-68
    • /
    • 2004
  • The purpose of the present study was to examine the efficacy and mechanism of fraction IV cold ethanol fractionation and pasteurization (60$^{\circ}C$ heat treatment for 10 h), involved in the manufacture of albumin from human plasma, in the removal and/or inactivation of the hepatitis A virus (HAV). Samples from the relevant stages of the production process were spiked with HAV and the amount of virus in each fraction then quantified using a 50% tissue culture infectious dose (TCID$\_$50/). HAV was effectively partitioned from albumin during the fraction IV cold ethanol fractionation with a log reduction factor of 3.43. Pasteurization was also found to be a robust and effective step in inactivating HAV, where the titers were reduced from an initial titer of 7.60 log TCID$\_$50/ to undetectable levels within 5 h of treatment. The log reduction factor achieved during pasteurization was $\geq$4.76. Therefore, the current results indicate that the production process for albumin has sufficient HAV reducing capacity to achieve a high margin of virus safety.