Browse > Article
http://dx.doi.org/10.14478/ace.2020.1049

Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum  

Im, Hongrae (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
Kwon, Rokgyu (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
Park, Soeun (Research Center of Chemical Technology, Hankyong National University)
Kim, Young-Kee (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.4, 2020 , pp. 423-428 More about this Journal
Abstract
In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.
Keywords
Clostridium autoethanogenum; Syngas fermentation; Molybdenum; Nickel; Cobalt;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. E Park, B. H. Ahn, and Y.-K. Kim, Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing culture medium composition, Bioresour. Technol. Rep., 6, 237-240 (2019).   DOI
2 H. Xu, C. Liang, Z. Yuan, J. Xu, Q. Hua, and Y. Guo, A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system, Enzyme Microb. Technol., 101, 24-29 (2017).   DOI
3 P. Di Donato, I. Finore, A. Poli, B. Nicolaus, and L. Lama, The production of second generation bioethanol: The biotechnology potential of thermophilic bacteria, J. Clean Prod., 233, 1410-1417 (2019).   DOI
4 C. Liu, G. Luo, W. Wang, Y. He, R. Zhang, and G, Liu, The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation, Fuel, 224, 537-544 (2018).   DOI
5 O. Pardo-Planas, H. K. Atiyeh, J. R. Phillips, C. P. Aichele, and S. Mohammad, Process simulation of ethanol production from biomass gasification and syngas fermentation, Bioresour. Technol., 245, 925-932 (2017).   DOI
6 J. Jack, J. Lo, P. -C. Maness, and Z. J. Ren, Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas, Biomass Bioenergy, 124, 95-101 (2019).   DOI
7 J. Chen, J. Daniell, D. Griffin, X. Li, and M. A. Henson, Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum, Biochem. Eng. J., 129, 64-73 (2018).   DOI
8 A. Singla, D. Verma, and P. Sarma, Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol, Bioresour. Technol., 172C, 41-49 (2014).
9 J. L. Cotter, M. S. Chinn, and A. M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzyme Microb. Technol., 44, 281-288 (2009).   DOI
10 Y. Guo, J. Xu, Y. Zhang, H. Xu, Z. Yuan, and D. Li, Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source, Bioresour. Technol., 101, 8784-8789 (2010).   DOI
11 J. Saxena, and R. Tanner, Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei, World J. Microb. Biotechnol., 28, 1553-1561 (2012).   DOI
12 G. Najafpour and H. Younesi, Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii, Enzyme Microb. Technol., 38, 223-228 (2006).   DOI
13 H. N. Abubackar, M. C. Veiga, and C. Kennes, Production of acids and alcohols from syngas in a two-stage continuous fermentation process, Bioresour. Technol., 253, 227-234 (2018).   DOI
14 H. Heiskanen, I. Virkajärvi, and L. Viikari, The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum, Enzyme Microb. Technol., 41, 362-367 (2007).   DOI
15 H. N. Abubackar, F. R. Bengelsdorf, P. Durre, M. C. Veiga, and C. Kennes, Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia, Appl. Energy, 169, 210-217 (2016).   DOI
16 H. R. Im, T. G. An, S. E. Park, and Y.-K. Kim, Effect of vitamin and sulfur sources on syngas fermentation using Clostridium autoethanogenum, Appl. Chem. Eng., 30, 681-686 (2019).
17 R. Zabihi, D. Mowla, G. Karimi, and P. Setoodeh, Examination of the impacts of salinity and culture media compositions on Clostridium acetobutylicum NRRL B-591 growth and acetone-butanol-ethanol biosynthesis, J. Environ. Chem. Eng., 7, 102835 (2019).   DOI
18 H. N. Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122-127 (2015).   DOI
19 D. K. Kundiyana, R. L. Huhnke, P. Maddipati, H. K. Atiyeh, and M. R. Wilkins, Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation, Bioresour. Technol., 101, 9673-9680 (2010).   DOI
20 K. Arslan, B. Bayar, H. N. Abubackar, M. C. Veiga, and C. Kennes, Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas, Bioresour. Technol., 292, 121941 (2019).   DOI
21 J. R. Phillips, H. K. Atiyeh, R. S. Tanner, J. R. Torres, J. Saxena, M. R. Wilkins, and R. L. Huhnke, Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques, Bioresour. Technol., 190, 114-121 (2015).   DOI
22 X. Sun, H. K. Atiyeh, H. Zhang, R. S. Tanner, and R. L. Huhnke, Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar, Appl. Energy, 236, 1269-1279 (2019).   DOI
23 F. Ammam, P.-L. Tremblay, D. Lizak, and T. Zhang, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata, Biotechnol. Biofuels, 9, 163 (2016).   DOI
24 P. R. Nimbalkar, M. A. Khedkar, R. S. Parulekar, V. K. Chandgude, K. D. Sonawane, P. V. Chavan, and S. B. Bankar, Role of trace elements as cofactor: An efficient strategy toward enhanced biobutanol production, ACS Sustain. Chem. Eng., 6, 9304-9313 (2018).   DOI
25 J. R. Andreesen, and L. G. Ljungdahl, Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme, J. Bacteriol., 116, 867-873 (1973).   DOI
26 L. M. Paulo, J. Ramiro-Garcia, S. Van Mourik, A. J. M. Stams, and D. Z. Sousa, Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation, Front. Microbiol., 8, 1341 (2017).   DOI
27 I. Yamamoto, T. Saiki, S. M. Liu, and L. G. Ljungdahl, Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein, J. Biol., 258, 1826-1832 (1983).
28 A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Resistance of environmental bacteria to heavy metals, Bioresour. Technol., 64, 7-15 (1998).   DOI
29 J. Saxena, and R. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen Clostridium ragsdalei, J. Ind. Microbiol. Biotechnol., 38, 513-521 (2011).   DOI
30 K. C. Terlesky, M. J. Barber, D. J. Aceti and J. G. Ferry, EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila, J. Biol. Chem., 262, 15392-15395 (1987).   DOI
31 D. K. Kundiyana, R. L. Huhnke, and M. R. Wilkins, Effect of nutrient limitation and two-stage continuous fermentor design on productivities during "Clostridium ragsdalei" syngas fermentation, Bioresour. Technol., 102, 6058-6064 (2011).   DOI
32 X. Sun, H. K. Atiyeh, R. L. Huhnke, and R. S. Tanner, Syngas fermentation process development for production of biofuels and chemicals: A review, Bioresour. Technol. Rep., 7, 100279 (2019).   DOI