• Title/Summary/Keyword: Ethanol Production

Search Result 1,585, Processing Time 0.024 seconds

Isolation of Strains that Produce Ethanol Efficiently from Cellulosic Materials (섬유질 가수분해물로부터 효율적인 Ethanol 생산균주의 분리)

  • 고학룡;문종상;성낙계;심기환
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • Three strains able to efficiently produce ethanol from cellulosic hydrolysates were isolated from soil samples by enrichment culture in liquid saccharified wheat bran medium. The profiles of physiological and biochemical properties of two yeasts KM-09 and KM-402 and a bacterium Hg-225 were almost identical from those of Candida sp. and Klebsiella sp., respectively. Strains KM-09 and HG-225 used xylose and cellobiose as fermentable sugars, and HG-225 had a wide range of sugar utilization for ethanol fermentation. The optimal pH and temperature for growth of KM-09, KM-402 and HG-225 were 5.8, 5.6 and 6.8 and 32t, $30^{\circ}C$~ and $38^{\circ}C$, respectively. During the ethanol fermentation in saccharified wheat bran by the isolated strains, optimal temperature for ethanol production was more or less higher than those for growth, and addition of 0.2% (w/v) $MgSO_4$, into the medium enhanced ethanol productivity. Of the three strains ethanol content of KM-09 was the highest with about 2.3% (v/v), and ethanol production rate of HG-225 was faster than the others and maximum productivity was after 4 days. KM-09 (1.42% v/v) and HG-225 (1.05%, vlv) produced ethanol from 4% (wIv) xylose but growth rate was slower than on glucose. Otherwise KM-402 showed the highest ethanol productivity on glucose, but no ethanol was detected on xylose and cellobiose.

  • PDF

Production of Ethanol Directly from Potato Starch by Mixed Culture of Saccharomyces cerevisiae and Aspergillus niger Using Electrochemical Bioreactor

  • Jeon, Bo-Young;Kim, Dae-Hee;Na, Byung-Kwan;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.545-551
    • /
    • 2008
  • When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The $K_m\;and\;V_{max}$ of the extracellular glucoamylase were 652.3 mg/l of starch and 253.3 mg/l/min of glucose, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g/l potato starch by a mixed culture of A. niger and S. cerevisiae was about 5 g/l in a conventional bioreactor, but was 9 g/l in 5 volts of PEF and about 19 g/l in 4 volts of PEF for 5 days.

Ethanol Production by a New Method of Alginate-Immobilization (새로운 Alginate 고정화 방법에 의한 에탄올 생산)

  • Kim, Eun-Young;Kim, Seung-Wook;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

Ethanol Production by the Mixed Culture of Some Aspergilli and Saccharomyces cerevisiae (효모와 고오지 곰팡이의 혼합배양에 의한 주정생산)

  • Choi, Byung-Kwon;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.696-699
    • /
    • 1990
  • Some mixed culture systems consisting of koji molds and yeast were tested for the ethanol production by simultaneous saccharification and fermentation using polished rice as the substrate. Aspergillus shirousamii showed the highest ethanol production in the mixed culture with Saccharomyces cerevisiae on steamed rice added with 150 ml water in 250 ml Erlenmeyer flask. The optimum initial pH, temperature and specific surface for the ethanol production in this system were 6.5, $30^{\circ}C$, and 0.1, respectively. Under this condition, 12.9% ethanol was produced with inoculation with $5{\times}10^2$ conidia/ml of A. shirousamii and $5{\times}10^6\;cells/ml$ of S. cerevisiae in 10 days.

  • PDF

Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

  • Im, Kyung Hoan;Nguyen, Trung Kien;Choi, Jaehyuk;Lee, Tae Soo
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis (Pichia stipitis를 이용한 리그노셀룰로스계 바이오매스 기반의 바이오에탄올 생산)

  • Bae, Yang-Won;Seong, Pil-Je;Cho, Dae-Haeng;Shin, Soo-Jeong;Kim, Seung-Wook;Han, Sung-Ok;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.533-538
    • /
    • 2010
  • We investigated the effect of inhibitory compounds derived lignocellulosic hydrolysates on cell growth, sugar consumption and ethanol productivity, and also we intended to identify the potential for ethanol production based on lignocellulosic hydrolysates. Cell growth and ethanol production in the presence of acetate were initiated after 12 hr. Furans showed a longer lag time and phenolics showed a significant effect on strain and ethanol production in comparison to other model compounds. In the case of lignocellulosic hydrolysates, the acetate strongly affected cell growth and ethanol production.

Cilostazol Decreases Ethanol-Mediated TNFalpha Expression in RAW264.7 Murine Macrophage and in Liver from Binge Drinking Mice

  • Lee, Youn-Ju;Eun, Jong-Ryeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Alcoholic hepatitis is a leading cause of liver failure in which the increased production of tumor necrosis factor ${\alpha}$ (TNF${\alpha}$) plays a critical role in progression of alcoholic liver disease. In the present study, we investigated the effects of cilostazol, a selective inhibitor of type III phosphodiesterase on ethanol-mediated TNF${\alpha}$ production in vitro and $in$ $vivo$, and the effect of cilostazol was compared with that of pentoxifylline, which is currently used in clinical trial. RAW264.7 murine macrophages were pretreated with ethanol in the presence or absence of cilostazol then, stimulated with lipopolysacchride (LPS). Cilostazol significantly suppressed the level of LPS-stimulated TNF${\alpha}$ mRNA and protein with a similar degree to that by pentoxifylline. Cilostazol increased the basal AMP- activated protein kinase (AMPK) activity as well as normalized the decreased AMPK by LPS. AICAR, an AMPK activator and db-cAMP also significantly decreased TNF${\alpha}$ production in RAW264.7 cells, but cilostazol did not affect the levels of intracellular cAMP and reactive oxygen species (ROS) production. The $in$ $vivo$ effect of cilostazol was examined using ethanol binge drinking (6 g/kg) mice model. TNF${\alpha}$ mRNA and protein decreased in liver from ethanol gavaged mice compared to that from control mice. Pretreatment of mice with cilostazol or pentoxifylline further reduced the TNF${\alpha}$ production in liver. These results demonstrated that cilostazol effectively decrease the ethanol-mediated TNF${\alpha}$ production both in murine macrophage and in liver from binge drinking mice and AMPK may be responsible for the inhibition of TNF${\alpha}$ production by cilostazol.

Effects of Angelicae Gigantis Radix pharmacopuncture on Nitric Oxide and Prostaglandin E2 Production in Macrophage (당귀약침액이 대식세포에서 산화질소(NO) 및 프로스타글란딘 (Prostaglandin) 생성에 미치는 영향)

  • Choi, You-Jin;Roh, Jeong-Du
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.81-90
    • /
    • 2011
  • Objectives : Angelicae Gigantis Radix has been known traditional medicine with antimicrobial activities and it has been widely used for treatment of blood and inflammatory diseases. In the present study, some studies examined anti-inflammation effects of Angelicae Gigantis Radix but they usually were performed by ethanol extracted Angelicae Gigantis Radix pharmacopuncture. So We investigated the inhibitory effects of Angelicae Gigantis Radix pharmacopuncture by hot water and ethanol extract on Nitric oxide(NO) and Prostaglandin $E_2$($PGE_2$) production in lipopolysaccharide(LPS) induced macrophage cell. Methods : Angelicae Gigantis Radix was extracted by ethanol and hot water. Cell viability was determined by MTT assay. To evaluate anti-inflammation effects of Angelicae Gigantis Radix pharmacopuncture, we examined NO and $PGE_2$ production in LPS induced macrophages. The concentrations of NO and $PGE_2$ were measured by Griess assay and Enzyme Immuno-Assay. Results : 1) The MTT assay demonstrated that cytotoxic effect of Angelicae Gigantis Radix pharmacopuncture by hot water extract and ethanol extract in RAW 264.7 macrophage cells were not appeared. 2) Angelicae Gigantis Radix pharmacopuncture by ethanol extract and hot water extract inhibited NO production in LPS induced macrophages significantly. 3) Angelicae Gigantis Radix pharmacopuncture by ethanol extract tended to inhibiting $PGE_2$ production in LPS induced macrophages. And Angelicae Gigantis Radix pharmacopuncture by hot water extract inhibited LPS induced production of $PGE_2$ in RAW 264.7 macrophage cells significantly. Conclusions : This study suggests that Angelicae Gigantis Radix pharmacopuncture may have an anti-inflammatory property through the inhibition of NO and $PGE_2$ production in LPS induced macrophages. It may have a therapeutic potential for the treatment of various inflammatory diseases.

Ethanol Fermentation in Lactose Medium Using a Fusant Strain of Saccharomyces cerevisiae and Kluyveromyces fragilis

  • Lee, Chu-Hee;Yang, Sun-A;Rho, Ju-Won;Lee, Seung-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1992
  • The fermentative characteristics in ethanol production from lactose, with increased ethanol tolerance, of a fusant yeast strain constructed by protoplast fusion of Saccharomyces cerevisiae and Kluyveromyces fragilis were studied. The ethanol tolerance of this strain was increased to 8.0%, compared with the parent K. fragilis. During batch ethanol fermentation the optimal cultivation conditions for this fusant yeast were an initial pH of 4.5, a culture temperature $30^\circ{C}$. stirring at 100 rpm without aeration in 10% lactose medium (supplied with 1.0% yeast extract). Using this fusant strain in whey fermentation to ethanol, maximum ethanol production reached 3.41% (w/v) (theoretical yield; 66.7%) after a 48 hour cultivation period.

  • PDF

Effect of Xylose and Glucose on Xylitol Production by Candida parapsilosis (Candida parapsilosis에 의한 Xylitol 생산시 Xylose와 Glucose가 미치는 영향)

  • Oh, Deok-Kun;Kim, Sang-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1151-1156
    • /
    • 1996
  • Effects of xylose and glucose on the xylitol production were investigated with Candida parapsilosis KFCC 10875. With increasing the ratio of glucose to xylose, xylitol production decreased but ethanol and glycerol production increased. The maximum concentrations of ethanol and glycerol were 21.5 g/l and 3.6 g/l, respectively, in a medium consisting of 10 g/l xylose and 40 g/l glucose. No xylitol was formed in the glucose medium without xylose since xylitol could not be produced from glucose alone. The inhibitory effect of ethanol, a major by-product, on xylitol production was also studied. As the added ethanol concentration was increased, xylitol production decreased. When cells were inoculated in a xylose medium after removing the by-product (ethanol), xylitol production was not inhibited. The concentrated cells grown on xylose or glucose were inoculated in a fermentor containing the xylose medium. The total activities $(specific{\;}activities{\times}\;cell\;concentration)$ of xylose reductase and xylitol dehydrogenase in concentrated cells grown on glucose were the same as those in a normal fermentation; the specific activities of the above enzymes in the cells grown on xylose were the same as those in a normal fermentation. It indicates that the xylitol productivity of concentrated cells grown on xylose could be increased with increasing the cell concentration. By using concentrated cells of 20 g/l grown on xylose, the final xylitol concentration of 40 g/l was obtained for 18 h fermentation from 50 g/l xylose.

  • PDF