Browse > Article

Production of Ethanol Directly from Potato Starch by Mixed Culture of Saccharomyces cerevisiae and Aspergillus niger Using Electrochemical Bioreactor  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Kim, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myongji University)
Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University)
Ahn, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myongji University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 545-551 More about this Journal
Abstract
When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The $K_m\;and\;V_{max}$ of the extracellular glucoamylase were 652.3 mg/l of starch and 253.3 mg/l/min of glucose, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g/l potato starch by a mixed culture of A. niger and S. cerevisiae was about 5 g/l in a conventional bioreactor, but was 9 g/l in 5 volts of PEF and about 19 g/l in 4 volts of PEF for 5 days.
Keywords
Electrochemical bioreactor; mixed culture; Aspergillus niger; Saccharomyces cerevisiae; ethanol fermentation; pulsed electric field (PEF);
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Amin, G., R. De Mot, K. Van Kijek, and H. Verachtert. 1985. Direct alcoholic fermentation of starch biomass using amylolytic yeast strains in batch and immobilized cell systems. Appl. Microbiol. Biotechnol. 22: 237-245   DOI
2 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
3 Laluce, C. and J. R. Mattoon. 1984. Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appl. Environ. Microbiol. 48: 17-25
4 Ma, Y. J., L. L. Lin, H. R. Chien, and W. H. Hsu. 2000. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31: 55-59   DOI   ScienceOn
5 Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778   DOI   ScienceOn
6 Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 135-1461   과학기술학회마을
7 Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266   DOI   ScienceOn
8 Yun, S. H., B. I. Sang, and D. H. Park. 2005. Influence of NaCl on the growth and metabolism of Halomonas salina. J. Microbiol. Biotechnol. 15: 118-124   과학기술학회마을
9 David, H. G. 1994. Fungal Physiology, pp. 215-244. Second Ed. Wiley-Liss, New York
10 Chang. R. 1998. Chemistry, pp. 784-791. Sixth Ed. McGraw-Hill.
11 Knox, A. M., J. C. Preez, and S. G. Kilian. 2004. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb. Technol. 34: 453-460   DOI   ScienceOn
12 Eksteen, J. M., P. van Rensburg, R. R. Cordero Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646   DOI   ScienceOn
13 Han, Y. J. and T. S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246   과학기술학회마을
14 Na, B. K., T. S. Hwang, S. H. Lee, D. H. Ahn, and D. H. Park. 2007. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor. J. Microbol. Biotechnol. 17: 445-453   과학기술학회마을
15 Oner, E. T., S. G. Oliver, and B. Kurdar. 2005. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71: 6443-6445   DOI   ScienceOn
16 Abouzied, M. M. and C. A. Reddy. 1986. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 52: 1055-1059
17 Abouzied, M. M. and C. A. Reddy. 1987. Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast and Saccharomyces cerevisiae. Biotechnol. Lett. 9: 59-62   DOI
18 Goffrini, P., I. Ferrero, and C. Donnini. 2002. Resp irationdependent utilization of sugars in yeasts: A determinant role for sugar transporters. J. Bacteriol. 184: 427-432   DOI   ScienceOn
19 Kim, K., C. S. Park, and J. R. Mattoon. 1988. High-efficiency, one-step starch utilization by transformed Saccharomyces cell which secrete both yeast glucoamylase and mouse $\alpha$-amylase. Appl. Environ. Microbiol. 54: 966-971
20 Altintas, M. M., K. Ulgen, B. Kirdar, Z. I. Onsan, and S. G. Oliver. 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb. Technol. 31: 640-647   DOI   ScienceOn
21 Kosaric, N., A. Wieczorek, G. P. Cosentino, R. J. Magee, and J. E. Prenosil. 1983. Ethanol Fermentation, pp. 257-285. In H. Dellweg (ed.), Vol. 3. Verlag Chemie, FL
22 Nakamura, Y., F. Kobayashi, M. Ohnaga, and T. Sawada. 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol. Bioeng. 53: 21-25   DOI   ScienceOn
23 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 250-256   DOI
24 Kang, H. S., J. K. Lee, M. H. Kim, and D. H. Park. 2006. Effect of electrochemical oxidation potential on biofilter for bacteriological oxidation of VOCs to CO$_2$. J. Microbiol. Biotechnol. 16: 399-408   과학기술학회마을
25 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
26 Urszula, P. and J. Jamroz. 2007. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 17: 1139-1146   과학기술학회마을
27 De Mot, R., K. Van Kijek, A. Donkers, and H. Verachtert. 1985. Potentialities and limitations of direct alcoholic fermentation of starch material with amylolytic yeasts. Appl. Microbiol. Biotechnol. 22: 222-226   DOI
28 Birol, G., Z. I. Onsan, B. Kirdar, and S. G. Oliver. 1998. Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb. Technol. 22: 1-6