• Title/Summary/Keyword: Etching time

Search Result 616, Processing Time 0.026 seconds

Acid Pickling/polishing of AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • This article reports a new chemical bath for preparing a mirror-like surface of AZ31 Mg alloy. In order to find an appropriate chemical polishing solution, four different acidic solutions of sulphuric acid, nitric acid, acetic acid and a specially designed mixture of nitric acid and acetic acid were investigated in view of the changes in surface appearance, roughness and dissolution rate of AZ31 Mg alloy. The surface scales on AZ31 Mg alloy were readily removed by all the acidic solutions, but a reflective surface was produced only by etching in the specially designed solution, and only after a specific etching time. The surface roughness increased with etching time in sulphuric acid, nitric acid, and acetic acid, but it lowered after a specific etching time in the specially designed mixture of nitric acid and acetic acid. Dissolution rate of the alloy in the specially designed mixture of nitric acid and acetic acid appeared to be more than twice than that in separate nitric acid or acetic acid. In this work, we recommend the mirror-like surface of AZ31 Mg alloy obtained by polishing for an optimum time in a mixture of nitric acid and acetic acid for following surface finishings, chemical conversion coating, electroplating, electrophoretic painting and anodizing treatment.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities

  • Kang, Hyun-Jung;Moon, Ho-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Objectives: This study evaluated the effect of 2% chlorhexidine digluconate (CHX) with different application times on microtensile bonds strength (MTBS) to dentin in class I cavities and intended to search for ideal application time for a simplified bonding protocol. Materials and Methods: Flat dentinal surfaces with class I cavities ($4mm{\times}4mm{\times}2mm$) in 40 molar teeth were bonded with etch-and-rinse adhesive system, Adper Single Bond 2 (3M ESPE) after: (1) etching only as a control group; (2) etching + CHX 5 sec + rinsing; (3) etching + CHX 15 sec + rinsing; (4) etching + CHX 30 sec + rinsing; and (5) etching + CHX 60 sec + rinsing. Resin composite was builtup with Z-250 (3M ESPE) using a bulk method and polymerized for 40 sec. For each condition, half of the specimens were immediately submitted to MTBS test and the rest of them were assigned to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using two-way ANOVA, at a significance level of 95%. Results: There was no significant difference in bond strength between CHX pretreated group and control group at the immediate testing period. After thermocycling, all groups showed reduced bond strength irrespective of the CHX use. However, groups treated with CHX maintained significantly higher MTBS than control group (p < 0.05). In addition, CHX application time did not have any significant influence on the bond strength among groups treated with CHX. Conclusion: Application of 2% CHX for a short time period (5 sec) after etching with 37% phosphoric acid may be sufficient to preserve dentin bond strength.

A Study of Mechanochemical Hyperfine-Writing Technique Using Deformation Induced Etch Hillock Phenomena (변형유기 식각 힐록 현상을 이용한 기계화학적 극미세 Writing 기법에 대한 연구)

  • Kang Chung Gil;Youn Sung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is to suggest a hyperfine maskless writing technique by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wr\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (etching time, normal load, loading .ate, hold-time at the maximum load) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies. Finally, sample characters were written to show the possibility of the application.

Observation of Growth Behavior of Induced Hillock for Nano/Micro Patterning on Surface of Borosilicate with Etching Time and Load (보로실리케이트 표면의 나노/마이크로 패터닝을 위한 식각 시간, 하중에 따른 유기 힐록의 성장거동 관찰)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Indentation pattern and line pattern were machined on borosilicate(Pyrex 7740 glass) surface using the combination of mechanical machining by $Nanoi-indenter\circledR$ XP and HF wet etching, and a etch-mask effect of the affected layer of the nano-scratched and indented Pyrex 7740 glass surface was investigated. In this study, effects of indentation and scratch process with etching time on the morphologies of the indented and scratched surfaces after isotropic etching were investigated from an angle of deformation energies.

  • PDF

THE BONDING DURABILITY OF TOTAL ETCHING ADHESIVES ON DENTIN (산부식형 상아질 접착제의 접착 내구성에 관한 연구)

  • Jung, Mi-Ra;Choi, Gi-Woon;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.365-376
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of different etching times on microtensile bond strength (${\mu}TBS$) to dentin both initial and after thermocycling with 3 different types of total-etching adhesives. Fifty four teeth were divided into 18 groups by etching times (5, 15, 25 sec), adhesives types (Scotchbond Multipurpose (SM), Single Bond (SB), One-Step (OS)) and number of thermocycling (0, 2,000 cycles). Flat dentin surfaces were prepared on mid-coronal dentin of extracted third molars. After exposed fresh dentin surfaces were polished with 600-grit SiC papers, each specimen was acid-etched with 35% phosphoric acid (5, 15, 25 sec) and bonded with 3 different types of total etching adhesives respectively. Then, hybrid composite Z-250 was built up. Half of them were not thermocycled (control group) and the ethers were subjected to 2,000 thermocycle (experimental group). They were sectioned occluso-gingivally into $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams and tested with universal testing machine at a crosshead speed of 1.0 mm/min. Within limited data of this study, the results were as follows 1. There was no statistically significant difference in ${\mu}TBS$ between the thermocycled and non-thermocycled groups, except for both SM and SB etched for 25 sec. 2. In thermocycled SM and SB groups, bond strength decreased by extended etching time. In total etching systems, adhesive durability for dentin could be affected by type of solvents in adhesive and etching time. Especially, extended etching time may cause deteriorate effects on bond strength when ethanol-based adhesive was used.

Real-time malfunction detection of plasma etching process using EPD signal traces (EPD 신호궤적을 이용한 플라즈마 식각공정의 실시간 이상검출)

  • Cha, Sang-Yeob;Yi, Seok-Ju;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.246-255
    • /
    • 1998
  • This paper presents a novel method for real-time malfunction detection of plasma etching process using EPD signal traces. First, many reference EPD signal traces are collected using monochromator and data acquisition system in normal etching processes. Critical points are defined by applying differentiation and zero-crossing method to the collected reference signal traces. Critical parameters such as intensity, slope, time, peak, overshoot, etc., determined by critical points, and frame attributes transformed signal-to symbol of reference signal traces are saved. Also, UCL(Upper Control Limit) and LCL(Lower Control Limit) are obtained by mean and standard deviation of critical parameters. Then, test EPD signal traces are collected in the actual processes, and frame attributes and critical parameters are obtained using the above mentioned method. Process malfunctions are detected in real-time by applying SPC(Statistical Process Control) method to critical parameters. the Real-time malfunction detection method presented in this paper was applied to actual processes and the results indicated that it was proved to be able to supplement disadvantages of existing quality control check inspecting or testing random-selected devices and detect process malfunctions correctly in real-time.

  • PDF

The Fabrication of Digitron Grid by Photoetching Process (포토에칭법에 의한 Digitron용 Grid제조에 관한 연구)

  • 김만;이종권
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.1
    • /
    • pp.60-72
    • /
    • 1996
  • A photoetching process is widely used for small and high precision parts in machinery, electronic and semi-conductor industries. One of the high precision parts, grid is very important part of digitron which use electron display, and it is fabricated by only photoetching process because of high precision. In this study, to develop high precision digitron grid, characteristics of etching solution were investigated with electrochemical test, that was potentiodynamic test and immersion test in the ferric chloride solution and added some additives. Based on the electrochemical etching test, grid was fabricated by continuous photoetching process at various etching condition. From the result of measured line width and etching depth under-cut and etching factor were calculated. For the fabrication of 25$\mu\textrm{m}$ line width, optimal etching condition was etching temperature 40~$45^{\circ}C$, spray pressure 1.5kg/$\textrm{cm}^2$ and etching time 3~4min.

  • PDF

Optimization of Backside Etching with High Uniformity for Large Area Transmission-Type Modulator

  • Lee, Soo-Kyung;Na, Byung-Hoon;Ju, Gun-Wu;Choi, Hee-Ju;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.319-320
    • /
    • 2012
  • Large aperture optical modulator called optical shutter is a key component to realize time-of-flight (TOF) based three dimensional (3D) imaging systems [1-2]. The transmission type electro-absorption modulator (EAM) is a prime candidate for 3D imaging systems due to its advantages such as small size, high modulation performance [3], and ease of forming two dimensional (2D) array over large area [4]. In order to use the EAM for 3D imaging systems, it is crucial to remove GaAs substrate over large area so as to obtain high uniformity modulation performance at 850 nm. In this study, we propose and experimentally demonstrate techniques for backside etching of GaAs substrate over a large area having high uniformity. Various methods such as lapping and polishing, dry etching for anisotropic etching, and wet etching ([20%] C6H8O7 : H2O2 = 5:1) for high selectivity backside etching [5] are employed. A high transmittance of 80% over the large aperture area ($5{\times}5mm^2$) can be obtained with good uniformity through optimized backside etching method. These results reveal that the proposed methods for backside etching can etch the substrate over a large area with high uniformity, and the EAM fabricated by using backside etching method is an excellent candidate as optical shutter for 3D imaging systems.

  • PDF

Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell (다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구)

  • Kim, Myeong-Hyun;Song, Jae-Won;Nam, Yoon-Ho;Kim, Dong-Hyung;Yu, Si-Young;Moon, Hwan-Gyun;Yoo, Bong-Young;Lee, Jung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.